Чтение онлайн

на главную - закладки

Жанры

Мой метод: начальное обучение
Шрифт:

Рассмотрим куб подробнее. Одна сторона его состоит из 4 бусин. Умножим 4 раза квадрат со стороной 4 — получим куб. Умножим площадь квадрата на количество единиц, составляющих одну сторону, — получим объем. Мы не стараемся научить этому ребенка, мы просто предоставляем ему свободу действий и даем время на созревание идей в его сознании, пока он играет с материалом, рассматривает его, исследует свой замечательный куб, такой красивый и удобный.

Постепенно в тетрадях детей появляется множество квадратов и кубов чисел. Ученики легко обращают внимание, что при умножении на 10 достаточно просто приписать ноль. Они замечают, что число бусин в квадратах возрастает от двух до ста, а в кубах — до тысячи. Это наблюдение поможет им впоследствии осознать сущность арифметической и геометрической прогрессии.

Из кубов с бусинами интересно строить башню, похожую на розовую башню, только теперь разноцветные кубики соединены для

детей с глубоким знанием числовых соотношений. Они не просто воспринимаются на сенсорном уровне, но являются отражением развивающейся мощи интеллекта.

Геометрия

В Доме ребенка плоские вкладыши, которые развивают сенсорику, познакомили детей со многими геометрическими фигурами: квадрат, прямоугольник, треугольник, многоугольник, круг, овал и т. д. Благодаря прилагающимся карточкам малыши научились узнавать геометрические фигуры по нарисованным очертаниям. Кроме того, у нас есть металлические вкладыши, воспроизводящие уже известные детям геометрические фигуры. Их можно обводить, полученные контуры затем заштриховывать цветными карандашами (упражнение учит владеть пишущими инструментами).

Геометрический материал начальной школы можно рассматривать как продолжение знакомых упражнений. Он напоминает металлические вкладыши. Но каждая рамка прикреплена к квадратной дощечке-основе. Теперь не нужны ни специальные пюпитры, ни рамы, как для остальных вкладышей. Каждая фигура является завершенной и независимой. Дощечка белая, контур зеленый, а сам вкладыш, подвижная часть, красный. Когда вкладыш лежит на своем месте, то получается красная фигура в зеленой рамке. Подвижные вкладыши сделаны не из одного, а из многих частей, закрепленных на белом пространстве дощечки. Основное назначение этого материала — позволить ребенку самостоятельно упражняться в геометрии, научиться решать разные задачи. Возможность манипулировать геометрическими фигурами, располагать их по-разному, исследовать их различия чрезвычайно привлекает детей. Наши материалы напоминают игры на терпение, придуманные для малышей, только с более определенной образовательной целью. Ребенок уясняет основные геометрические принципы, чего так трудно достичь традиционными методами обучения. Понимание разницы между фигурами равными, подобными или равными по площади, понимание сути преобразования фигур, теоремы Пифагора возникает спонтанно и приносит ученикам много радости. Ребенок учится выполнять действия с дробями, упражняясь с цилиндрическими вкладышами. Осознание значения дроби, преобразование обычной дроби в десятичную, становится новым интеллектуальным достижением ученика, показателем и высокого уровня знаний, и развития умственных способностей. В обычной школе даже старшеклассник порой еще так не чувствует соотношения геометрических фигур, как наши малыши, совершившие все эти открытия самостоятельно, с удовольствием и неослабевающим энтузиазмом. Они свободно и стремительно движутся своим путем, не истощая, а накапливая внутреннюю энергию, в то время как остальные школьники напоминают усталых странников, бредущих босиком по острым камням.

Мы предоставляем ученику возможность свободно упражняться в тот момент, когда он наиболее готов к этому, и заниматься столько, сколько ему нужно, чтобы идея созрела в его сознании. В конце концов, у ребенка развивается абстрактное мышление. В основе этого достижения — интеллектуальная зрелость и достаточные знания, две опоры для человека, идущего к вершине. Мы столкнемся с этим феноменом не раз. Каждый шаг на пути внутреннего созревания, каждое новое обретенное знание становится для ученика площадкой для следующего взлета. Интеллект, чтобы подняться к абстракции, нуждается в опоре, как самолет во взлетной полосе. Нужен разбег, время, необходимое для разгона. Нужно крепкое оснащение, подготовка — одного желания мало. Самолет без топлива, птица без сильных крыльев — разве взлетят они? То же самое происходит с детским интеллектом. Пусть человек от природы наделен высокими способностями, ему нужно опираться на реальный опыт и пополнять запасы внутренней энергии. Чем больше материал привлекает внимание ученика, тем больше он дает возможностей для абстрагирования, для развития творческого воображения (следствия растущего внутреннего потенциала).

Геометрические вкладыши во многом удовлетворяют интеллектуальные потребности детей. С ними можно упражняться не только в составлении фигур, в сравнении их, но также в рисовании. Долгое, тщательное срисовывание позволяют ребенку сосредоточиться на каждой детали, обдумать каждую мелочь. Причем рисунок, как станет видно позднее, может быть двух видов: геометрический и художественный, возможно и смешение жанров. Геометрический рисунок воспроизводит фигуры. Выполняя его, малыш учится владеть различными инструментами, линейкой, угольником, циркулем, транспортиром.

Благодаря геометрическому рисованию, достигается истинное понимание геометрии, чему способствует специальный альбом, также входящий в комплект.

Художественное рисование состоит в комбинировании различных фигур (из комплекта вкладышей) и рисовании их цветными карандашами, красками. Это уже настоящее творчество. Наши вкладыши так пропорциональны, их сочетания так гармоничны, что способствуют развитию эстетического вкуса ребенка. Мы можем копировать композиции великих мастеров, таких как Джотто.

Соединение художественного и геометрического рисования начинается с украшения различных частей фигуры (центра, угла, противоположных сторон), а затем можно несколькими деталями, нарисованными от руки, завершить рисунок, превратив его из чертежа в художественную композицию.

Описание геометрического развивающего материала

 Первая серия вкладышей: квадраты, фигуры, состоящие из отдельных частей.

Эта серия состоит из 9 квадратных вкладышей, в основе которых есть углубления — одинаковые белые квадраты со стороной 10 см. В одно углубление вложен целый квадрат, в другие — те же квадраты, но состоящие из отдельных частей:

– квадрат, состоящий из 2 равных прямоугольников;

– квадрат, состоящий из 4 равных прямоугольников;

– квадрат, состоящий из 8 равных прямоугольников;

– квадрат, состоящий из 16 равных прямоугольников;

– квадрат, состоящий из 2 равных треугольников;

– квадрат, состоящий из 4 равных треугольников;

– квадрат, состоящий из 8 равных треугольников;

– квадрат, состоящий из 16 равных треугольников.

Ребенок может взять квадрат, состоящий из 2 равных прямоугольников, и квадрат, состоящий из 2 равных треугольников, поменять местами части фигур, то есть первый квадрат заполнить двумя треугольниками, а второй — прямоугольниками. Части фигур можно наложить друг на друга внутренней стороной (на внешней будут мешать кнопки, которые нужны для удобства доставания фигуры из рамки). Наложение позволяет установить равенство фигур. Однако треугольник и прямоугольник — разные по форме фигуры, хотя каждая из них составляет ровно половину того же самого квадрата. Так рождается ощущение равенства площади фигур. Два треугольника равны между собой, и два прямоугольника равны между собой. Ученик сравнивает их, накладывая фигуры друг на друга, и замечает, что часть треугольника, выходящая за пределы прямоугольника, равна той части треугольника, которая прикрыта прямоугольником. Следовательно, треугольник и прямоугольник отличаются по форме, но равны по площади.

Аналогичные наблюдения повторяются и с другими квадратами, разделенными на большее количество частей. Квадратики, являющиеся четвертой частью большого квадрата (они получились в результате деления фигуры по медианам), равны между собой и равны по площади треугольникам, возникшим в результате деления большого квадрата по диагоналям. Фигуры, одинаковые по форме, но отличающиеся по размеру, являются подобными. Прямоугольник — половина большого квадрата, подобен прямоугольнику, являющемуся 1/8 большого квадрата, при этом они не равны между собой, у них разная площадь. Также подобны друг другу большой квадрат и маленький, четвертушка большого. И т. д.

В разделении квадрата на части уже содержится идея дроби, хотя это пока еще не тот материал, который специально предназначен для изучения дробей.

 Вторая серия вкладышей: дроби.

Десять дощечек с углублениями в форме круга диаметром 10 см, белого цвета. В первое углубление вложен целый круг, в остальные — такие же круги, но поделенные на 2, 3, 4, 5, 6, 7, 8, 9, 10 равных частей. Дети учатся измерять углы каждой части. Для этого мы вырезали картонный круг. Центр обозначен черной точкой на светлом фоне. Очерчен полукруг, радиус которого равен радиусу вкладышей. Этот полукруг поделен лучами на 18 секторов. Лучи выходят за пределы дуги полукруга, сверху написаны числа: 0, 10, 20 — и так до 180. Дуга каждого сектора поделена еще десятью маленькими делениями. Получилась шкала, где одно деление равно одному градусу. Линии, соединяющие 0 и 180 и идущие от центра к 90°, проведены толще, чем остальные, они чуть выпуклые, что позволяет накладывать фигуры точнее. Ученик кладет фигуру вкладыша на картонный расчерченный круг так, что вершина угла совпадает с центром, а одна из сторон заканчивается на нуле. Читаем цифру над окончанием другой стороны фигуры — это и есть величина угла в градусах. После таких упражнений, после работы с транспортиром, ребенок умеет измерять любые углы. Он знает, что круг — это 360°, полукруг — 180°, а прямой угол — 90°.

Поделиться:
Популярные книги

Имперский Курьер

Бо Вова
1. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Имперский Курьер

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Рейдер 2. Бродяга

Поселягин Владимир Геннадьевич
2. Рейдер
Фантастика:
фэнтези
попаданцы
7.24
рейтинг книги
Рейдер 2. Бродяга

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Запределье

Михайлов Дем Алексеевич
6. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.06
рейтинг книги
Запределье

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Бестужев. Служба Государевой Безопасности. Книга третья

Измайлов Сергей
3. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга третья

Час Презрения

Сапковский Анджей
4. Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Час Презрения