Мой метод: начальное обучение
Шрифт:
Вкладыши состоят из ромба, разделенного диагональю на два равных треугольника, и прямоугольника, разделенного на три треугольника таким образом, что они могут заполнить и ромбовидное пространство рамки, и прямоугольное. В комплект входят и целые фигуры ромба и прямоугольника. Если их наложить друг на друга, можно убедиться, что высоты равны. Равенство площадей фигур доказывается перемещением трех частей прямоугольника в ромбовидное пространство и обратно в прямоугольное. Отсюда следует очевидный вывод, что площадь ромба равна произведению стороны на высоту. (Площадь прямоугольника ребенок уже умеет вычислять.)
Равны площади трапеции и прямоугольника, если одна из сторон прямоугольника равна сумме двух оснований трапеции,
Для этого достаточно разделить длинный прямоугольник пополам и положить одну часть над другой, образовав прямоугольник короче и шире первого. Большая прямоугольная рамка содержит три углублунных пространства: два трапецевидных (одинаковых) и одно прямоугольное, равное по площади, чья длина равна сумме двух оснований, а высота — половине высоты трапеции. Вкладыш в одну трапецию состоит из двух частей. Трапеция как бы разрезали по горизонтали на уровне половины высоты. Наложив обе части друг на друга, можно убедиться, что высоты равны. Вторая трапеция разделена на 4 части, которыми можно заполнить и прямоугольное пространство.
Равенство площадей двух фигур очевидно, а значит, можно понять, как вычислить площадь трапеции (умея вычислять площадь прямо-
угольника): произведение суммы двух оснований на половину высоты, или произведение полусуммы оснований на высоту. Ученики, измерив стороны фигур, могут произвести арифметические вычисления.
Равны площади правильного многоугольника и прямоугольника, если одна сторона прямоугольника равна периметру многоугольника, а вторая — половине апофемы.
Есть две отдельные рамки с углублениями в форме многоугольника. Один вкладыш представляет собой целый многоугольник, второй — многоугольник, разделенный на треугольники. К примеру, возьмем десятиугольник, значит, и треугольников будет 10. На отдельной рамке — прямоугольное углубление, которое можно заполнить треугольниками, разделенными горизонтальным разрезом на две половинки на уровне половины высоты (два треугольника должны быть еще разделены пополам вертикальным разрезом).
В геометрическом альбоме рисуем таблицу, демонстрирующую равенство площадей десятиугольника и прямоугольника. Рисуем отдельно развертку десятиугольника — 10 треугольников в ряд, горизонтальной пунктирной линией обозначаем уровень половины высоты треугольника. Рядом (параллельно) нужных размеров прямоугольник, а рядом прямоугольник, в который «врисованы» треугольники.
Из 10 треугольников-вкладышей можно без рамки сложить еще один прямоугольник (один треугольник при этом делится еще на два равных треугольничка вертикальным разрезом) и убедиться, что площадь многоугольника равна площади прямоугольника, одна сторона которого равна целой апофеме многоугольника, а другая — половине периметра. Становится понятно, что площадь правильного многоугольника равна произведению периметра на половину апофемы, или произведению апофемы на половину периметра.
1. Умея вычислять площадь треугольника, ребенок понимает, что все треугольники с одинаковыми основаниями и высотами равны по площади.
Для осознания этой теоремы мы приготовили специальный материал. Равные по площади ромб и прямоугольник. Каждая фигура разделена на два равных треугольника. Эти треугольники разные по форме, но равные по площади. Равенство их оснований и высот можно проверить и измерениями, и наложением фигур. Равенство площади треугольников очевидно, ибо
2. Теорема Пифагора. Квадрат гипотенузы прямоугольного тре
угольника равен сумме квадратов двух катетов.
1) два катета равны между собой;
2) катеты относятся друг к другу как 3:4;
3) общий случай.
1) Два катета равны между собой. На рамке — прямоугольный равнобедренный треугольник. Каждая сторона треугольника одновременно является стороной квадрата. Квадраты катетов по диагонали поделены на два треугольника каждый. Квадрат гипотенузы двумя диагоналями разделен на 4 треугольника. Получается всего 8 треугольников совершенно одинаковых. Треугольники катетов могут быть уложены в квадрат гипотенузы и наоборот. Эти перемещения увлекают детей, особенно если учесть, что треугольники квадратов катетов выкрашены в один цвет, а 4 треугольника квадрата гипотенузы — в другой.
2) Катеты относятся друг к другу как 3: 4. Квадраты сторон треугольника делятся не на треугольники, как в первом материале, а на квадраты. Квадрат первого (меньшего) катета поделен на 9 квадратиков (3 в квадрате) одного цвета, квадрат второго катета разделен на 16 (4 в квадрате) квадратиков другого цвета, квадрат гипотенузы разделен на 25 (5 в квадрате) квадратиков третьего цвета. Игра с перемещениями очевидна. Квадраты двух катетов могут быть заполнены квадратиками из квадрата гипотенузы. А квадрат гипотенузы можно красиво выложить разноцветными квадратиками квадратов катетов.
3) Общий случай. Рамка вкладышей — это большой прямоугольник размером 44x24 см. Ее можно сравнить с шахматной доской, где перемещаемые фигурки создают самые разные комбинации.
Понимание теоремы строится на нескольких уже освоенных принципах. Во-первых, два четырехугольника с одинаковым основанием и высотой равны по площади. Во-вторых, две фигуры, равные по площади третьей, равны по площади между собой.
Квадрат гипотенузы в данном материале разделен на два прямоугольника. Разделительная линия начинается в той точке, куда падает высота треугольника, опущенная из противолежащего угла. Кроме того, среди вкладышей есть два ромбоида. У одного сторона равна стороне квадрата большего катета, у второго — стороне квадрата меньшего катета. И у каждого ромбоида вторая сторона равна стороне квадрата гипотенузы. Меньшая высота этих ромбоидов равна высоте прямоугольников (части квадрата гипотенузы), большая высота равна сторонам квадратов катетов. Ребенку не обязательно заранее знать все эти соотношения величин. Он видит фигуры-вкладыши, красные и желтые, и просто перекладывает их, размещая в ячейках рамки. Кроме ячеек треугольной и квадратной формы (3 квадрата у каждой стороны треугольника) на той же рамке есть прямоугольные углубления для понимания соотношения высот и сторон ромбоидов. Материальное размещение подвижных фигурок на белом пространстве дает ученику возможность понять суть теоремы. Это не абстрактное заучивание соотношения величин, а простое и очень интересное упражнение.
Тот же материал может быть использован и для других целей.
Возьмем вкладыши для изучения теоремы Пифагора, уже размещенные на рамке. Сначала снимем два прямоугольника (части квадрата гипотенузы) и положим их в прямоугольные углубления. Опустив треугольник, положим на пустые места ромбоиды. Сначала это пространство было заполнено треугольником и двумя прямоугольниками, теперь — треугольником и двумя ромбоидами. Итак, сумма двух прямоугольников равна сумме двух ромбоидов. Теперь мы можем продемонстрировать равенство площадей ромбоидов и квадратов катетов. Опять уложим все вкладыши в исходном порядке и обратим внимание на пространство, занятое треугольником и квадратом большего катета. Для этого снимем уложенные в него фигуры и заполним другими: