Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В самой простой своей форме игровой автомат похож на так называемую доску Гальтона, которую используют в лекционных демонстрациях.

Прошу взглянуть на рисунок. В воронку насыпаются шарики. По очереди они мчатся вниз, отскакивают то вправо то влево от препятствий и наконец достигают какой-то ячейки. В качестве препятствий можно брать шестиугольные бляшки или вбить в доску гвоздики. Для доски Гальтона разработана детальная теория. Мы попытаемся обойтись без неё и предположить, что от каждого гвоздика

шарик с равной вероятностью может отскочить влево или вправо. Отклонение вправо и влево будет происходить совершенно по тем же законам, что и появление в рулетке красного и чёрного. На одну комбинацию лллллл… или пппппп… приходится множество комбинаций, состоящих из примерно равного числа отклонений влево и вправо. Поэтому чаще всего шарик будет попадать в среднюю пробирку и реже всего в самые крайние.

Можно провести большое число опытов, и каждый раз шарики будут распределяться примерно одинаково. Если усреднить результаты, то получим гладкую симметричную колоколообразную кривую, которая называется кривой Гаусса или кривой нормального распределения. Не кажется ли вам, читатель, странным, что какой-то кривой мы уделяем так много внимания. На небольшом клочке бумаги можно начертить сколько угодно самых разнообразных кривых, и никому не придёт в голову присваивать им имена или названия. А наша этой чести удостаивается. Почему? Не имеет ли она какой-то математический признак, раз она заслужила специальное название.

Несомненно. Сейчас мы поясним, в чём состоит её математическая общность, только разрешите от реального опыта перейти к абстрактной схеме. И пожалуйста, имейте в виду, что так поступают всегда физики-теоретики, поэтому абстрагированием мы не нарушаем канонов науки.

Упрощение, которое мы введём, состоит в следующем: будем считать, что каждый столбик отличается от соседнего на единицу отклонений. Положим для конкретности, что доска состоит из 10 рядов препятствий. Будем считать, что шарик обязательно встречается с одним из препятствий каждого ряда и с равной вероятностью отскакивает вправо или влево, при этом отклонения происходят всегда на один интервал.

Тогда шарик, который попал в среднюю пробирку, отклонился 5 раз влево, 5 раз вправо. Следующая ячейка заполнена шариками, путь которых состоял из шести отклонений в одну сторону и четырех в другую. Далее идут пробирки, заполняющиеся шариками в соответствии с вариантами 7—3, 8—2, 9—1 и 10—0.

Вариант 5—5 осуществляется максимальным числом способов, 6—4 – уже несколько меньшим, 7—3 – ещё меньшим… 10—0 – самая редкая комбинация. Отсюда и характерный вид кривой, проходящей через вершины столбиков.

Высоты столбиков пропорциональны числу комбинаций, с помощью которых осуществляется тот или иной вариант. Об этом мы уже говорили (обратитесь, пожалуйста, к стр. 17) [ссылка], рассматривая все возможные варианты серии из 5 игр в рулетку.

Надо было бы для ясности выписать все комбинации для серии из 10 опытов. Пожалуй, мы пойдём на большее. На этой странице изображён так называемый треугольник Паскаля, с помощью которого можно определять числа комбинаций для любых рядов испытаний. Для того чтобы продолжить этот треугольник хоть до бесконечности, нужно лишь время и умение складывать. Даже таблицу умножения знать не обязательно, поскольку каждое число треугольника равно сумме двух чисел, а именно соседних левого

и правого верхней строки.

В результате этих наипростейших арифметических операций мы получаем числа комбинаций левого и правого, красного и чёрного и вообще любых статистических «да» и «нет».

Как же пользоваться треугольником? Любая из его строк даёт числа комбинаций для определённого числа элементов. На рисунке выделена пятая строка. Она отвечает на все вопросы, касающиеся рядов из пяти испытаний. Числам 1, 5, 10, 10, 5, 1 (мы помним их) пропорциональны вероятности появления красного цвета в пяти последовательных поворотах колеса рулетки 0 раз, 1 раз, 2 раза, 3 раза, 4 раза и 5 раз. Значение вероятностей мы получим, поделив каждое число треугольника Паскаля на общее число испытаний, которое равно сумме чисел строки.

Возвращаясь к доске Гальтона мы можем сказать, что при десяти случайных встречах с препятствиями число шариков, которые попадут в крайние пробирки (все встречи привели к одним лишь левым или к одним лишь правым отклонениям), будет в среднем в 252 раза меньше числа шариков, попавших в средний приёмник.

С гауссовой кривой приходится сталкиваться во всех областях знания. Универсальность её объясняется очень просто: на неё укладываются вероятности отклонений от среднего во всех случаях, если только отклонения «вправо» и «влево» равновероятны. Если же отклонения от среднего невелики, как это бывает очень часто, то подобное требование осуществляется всегда. Сейчас мы продолжим знакомство с этой замечательной кривой, лежащей в основе любой статистики.

Случайные отклонения

Вкусы у людей, как известно, чрезвычайно разные. Одни сникают при взгляде на длинные колонки цифр, на графики с ниспадающими и вздымающимися вверх ломаными и плавными кривыми, на масштабные столбики, высота которых описывает все, что угодно, – урожаи, рост, потребление водки или посещаемость театров. У других же, и их немало, глаза загораются при взгляде на это богатство информации. Жадно рыщут они взглядом вдоль цифровых столбцов, просматривают графики и приходят к интересным и важным выводам в области экономики страны, понимания человеческого характера или ещё в чем-нибудь. Люди эти – статистики, – нужное и важное племя работников, значительный отряд министерств и ведомств.

Задачи статистики (так называются не только люди, но и область деятельности) разнообразны и обширны. На десятках тысяч библиографических карточек приведены данные о промышленном производстве, о народном образовании, о смертности населения, о функционировании поликлиник и больниц, об автомобильных катастрофах, о посещаемости кинофильмов и бог весть ещё о чём. Статистиков интересуют самые разные вещи: динамика роста тех или иных показателей, сопоставление данных по значению какого-либо параметра в разные времена года, или в разные часы дня, или среди мужчин и женщин, или среди лиц разного возраста.

Особое место занимают в статистике измерения средних значений и отклонений от средних. Весьма распространены измерения роста и веса. Вес цыплят, которыми торгует птицеферма, интересен потому, что характеризует её работу; рост людей интересен для швейной промышленности, выпускающей одежду ог 46-го до 56-го размеров, и т.д. Так как все это известно читателю из газет и радиопередач, приводящих всевозможные числа, то перейдём к нашей теме, а именно, к проявлению во всей этой массе чисел законов случая.

Поделиться:
Популярные книги

Стеллар. Трибут

Прокофьев Роман Юрьевич
2. Стеллар
Фантастика:
боевая фантастика
рпг
8.75
рейтинг книги
Стеллар. Трибут

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Совершенно несекретно

Иванов Дмитрий
15. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совершенно несекретно

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Единственная для темного эльфа 3

Мазарин Ан
3. Мир Верея. Драконья невеста
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Единственная для темного эльфа 3

Жандарм

Семин Никита
1. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
4.11
рейтинг книги
Жандарм

Долгий путь домой

Русич Антон
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
6.20
рейтинг книги
Долгий путь домой

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле

Наследие Маозари 6

Панежин Евгений
6. Наследие Маозари
Фантастика:
попаданцы
постапокалипсис
рпг
фэнтези
эпическая фантастика
5.00
рейтинг книги
Наследие Маозари 6

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита