Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Рис. 5.6.Сложение векторов по правилу параллелограмма
Ускорения этих частиц определяются действующими на них силами. Сила, приложенная к каждой из частиц, получается путем сложения (по правилу сложения векторов, см. рис. 5.6) всех сил, действующих на данную частицу со стороны всех остальныхчастиц. Чтобы система была хорошо определенной, необходимо задать некоторое четкое правило, которое позволяло бы установить, какая сила действует на частицу А со стороны другой частицы В . Обычно мы требуем, чтобы эта сила действовала по прямой, соединяющей частицы А и В (рис. 5.7).
Рис. 5.7.Сила,
Если речь идет о гравитационной силе, то между А и В возникает сила притяжения, величина которой пропорциональна произведению масс частиц А и В и обратно пропорциональна квадрату расстояния между частицами: закон обратных квадратов. Для других типов сил зависимость от взаимного расположения частиц может быть другой, и величина силы в этом случае будет зависеть не от масс частиц, а от какого-то иного их свойства.
Великий Иоганн Кеплер (1571–1630), современник Галилея, заметил, что орбиты планет, описываемые ими вокруг Солнца, имеют форму эллипсов, а не окружностей (причем Солнце всегда находится в фокусе, а не в центре эллипса), и сформулировал два других закона, задающих скорости, с которыми планеты движутся по орбитам. Ньютон сумел показать, что три закона Кеплера следуют из его собственной общей модели (с учетом силы притяжения, обратно пропорциональной квадрату расстояния между телами). Кроме того, Ньютон внес многие поправки к кеплеровским эллиптическим орбитам, а также объяснил ряд других эффектов (например, медленное движение оси вращения Земли, замеченное задолго до Ньютона еще древними греками). Чтобы прийти к таким результатам, Ньютону, помимо дифференциального исчисления, пришлось разработать немало дополнительных математических методов. Феноменальный успех, увенчавший эти усилия, во многом объясняется его высочайшим искусством математика и великолепной физической интуицией.
Механистический мир динамики Ньютона
С введением определенного закона для силы (как обратного квадрата расстояния между телами) ньютоновская модель превращается в точную и определенную систему динамических уравнений. Если положения, скорости и массы различных частиц заданы в некоторый момент времени, то их положения и скорости (равно как и массы, которые считаются постоянными) автоматически определены для всех последующих моментов времени. Эта форма детерминизма, которой удовлетворяет мир механики Ньютона, оказала (и все еще продолжает оказывать) глубокое влияние на философскую мысль. Попробуем изучить природу ньютонианского детерминизма чуть более подробно. Что он может сказать нам о «свободе воли»? Мог бы в строго ньютонианском мире существовать разум? Найдется ли в нем место хотя бы компьютерам?
Давайте попытаемся представить более конкретно «ньютонианскую» модель мира. Например, мы можем предположить, что частицы материи допустимо считать математическими точками, т. е. объектами, не имеющими никакой пространственной протяженности. В качестве альтернативы все частицы можно считать твердыми сферическими шариками. И в том, и в другом случае нам придется предположить, что законы действия сил, как в случае ньютоновского закона всемирного тяготения, известны. Мы хотим промоделировать и другие встречающиеся в природе силы, такие как электрическиеи магнитныевзаимодействия (впервые подробно исследованные в 1600 году Уильямом Гильбертом), или сильные ядерныевзаимодействия, которые, как ныне известно, связывают частицы (протоны и нейтроны), образующие атомные ядра. Электрическое взаимодействие похоже на гравитационное, поскольку тоже удовлетворяет закону обратных квадратов, но при этом одинаково заряженные частицы отталкивают(а не притягивают, как в случае гравитационного взаимодействия) друг друга, и величину электрического взаимодействия определяют не массы, а электрические зарядычастиц. Магнитное взаимодействие, так же как и электрическое, «обратно пропорционально квадрату расстояния» [108] , но ядерное взаимодействие имеет совершенно другую зависимость от расстояния: оно очень велико на очень малых расстояниях, сравнимых с внутриатомными, и пренебрежимо мало на больших расстояниях.
108
Различие между электрическим и магнитным взаимодействиями состоит в том, что индивидуальные «магнитные заряды» (т. е. северные и южные полюсы), по-видимому, не существуют в природе отдельно друг от друга. Магнитные частицы образуют так называемые «диполи», т. е. крохотные магнитики (в которых северный и южный полюсы как бы сливаются вместе).
Предположим,
Рис. 5.8.Тройное соударение. Поведение частиц в результате столкновения существенно зависит от того, какие частицы сталкиваются первыми, поэтому исход столкновения не зависит непрерывным образом от начальных данных
В нашей модели существует индетерминизм , когда происходит тройное столкновение! Если угодно, то мы можем просто исключитьтройные столкновения и столкновения более высокого порядка как «в высшей степени (бесконечно) невероятные». Это дает вполне непротиворечивую схему, но потенциальная проблема тройных столкновений означает, что результирующее поведение частиц может не зависеть непрерывным образом от начального состояния.
Поскольку такое положение дел нас не совсем удовлетворяет, то мы можем отдать предпочтение картине точечныхчастиц. Но для того, чтобы избежать некоторых теоретических трудностей, возникающих в рамках этого подхода (бесконечные силц и бесконечные энергии при столкновении частиц), необходимо сделать дополнительные предположения, в частности о том, что на коротких расстояниях силы, действующие между частицами, всегда становятся отталкивающими. Тогда мы можем обеспечить невозможность столкновения любой пары частиц. (Оно также помогает нам избежать проблемы определения поведениячастиц при столкновении!) Но для большей наглядности я все-таки буду рассматривать модель твердых сферических шариков, ибо, как мне кажется, подобная «бильярдная» картина для большинства из нас подсознательно как раз и является рабочей моделью реальности!
Подчеркнем (игнорируя проблему столкновения нескольких шариков), что ньютонианская [109] бильярдная картина реальности в действительности является детерминистскоймоделью. Слово «детерминистская» надлежит понимать в том смысле, что физическое поведение системы с математической точки зрения полностью определено во все моменты времени в будущем (или в прошлом) положениями и скоростями шариков (во избежание некоторых проблем предположим, что число шариков конечно) в какой-то один момент времени. Таким образом, создается впечатление, будто в таком бильярдном мире нет места для разума, который своей «свободной волей» мог бы влиять на поведение материальных объектов. Если мы верим в «свободу воли», то, по-видимому, вынуждены будем усомниться в возможности описания нашего реальногомира в рамках бильярдной модели.
109
Эту модель связывают с именем Ньютона, но, как и в случае с «ньютоновской» механикой в целом, это — всего лишь удобный ярлык. Собственные взгляды Ньютона на истиннуюприроду физического мира, по-видимому, отличались куда меньшим догматизмом и куда большей гибкостью. (Наиболее ярым сторонником «ньютоновской» модели, как представляется, был Р. Г. Бошкович A711-1787).)