Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Объем при этом действительно сохраняется, но тот же самый объем может теперь истончиться и распределиться по обширной области фазового пространства. Практически аналогичная картина будет наблюдаться в случае с капелькой чернил, попавшей в большую емкость с водой. В то время, как реальный объем чернильной жидкости остается неизменным, она постепенно истончается, распределяясь по всему объему емкости. Вероятно, подобным образом ведет себя и исходная область R 0 в фазовом пространстве. Она не обязательно должна расплываться по всемуфазовому пространству (эта предельная ситуация известна под названием «эргодической») — но вполне может в конце концов занять область, значительно превышающую ее первоначальный объем. (Дальнейшее обсуждение см. в книге: Дэвис [1974].)
Трудность заключается в том, что сохранение объема отнюдь не влечет за собой сохранение формы: малые области имеют тенденцию деформироваться, и их деформации простираются на большие расстояния. В многомерных пространствах проблема расплывания начальной области гораздо более серьезна, чем в
113
В действительности, ситуация еще более «осложняется» в результате того, что лиувиллевский объем в фазовом пространстве — всего лишь один из целого семейства «объемов» различного числа измерений (называемых инвариантами Пуанкаре), которые остаются постоянными в ходе эволюции системы, описываемой уравнениями Гамильтона. Однако я был немного несправедлив в оценке всеобщности моих утверждений. Можно представить себе систему, в которой физические степени свободы (дающие вклад в какой-то из объемов фазового пространства) могут быть «заброшены» за пределы области наших интересы (например, они могут относиться к излучению, уходящему на бесконечность), так что объем той части фазового пространства, которую мы непосредственно изучаем, мог бы, на самом деле, уменьшиться.
Помня о неизбежном расплывании исходной области в фазовом пространстве, уместно спросить: а как в таком случае вообще возможно делать предсказания в классической механике? Это действительно непростой вопрос. Расплывание начальной области говорит нам о том, что независимо от степени точности, с которой мы знаем начальное состояние системы (конечно, в разумных пределах), тенденция к возрастанию погрешностей со временем сделает нашу исходную информацию практически бесполезной. В этом смысле классическая механика в принципе непредсказуема. (Вспомним введенное выше понятие «хаоса».)
Чем же в таком случае объяснить явный успех ньютоновской механики? Говоря о небесной механике (т. е. движении небесных тел под действием сил гравитации), в качестве наиболее вероятной причины можно назвать, наверное, то, что, во-первых, небесная механика занимается изучением сравнительно небольшого числа связанных тел (Солнца, планет и их естественных спутников — лун), между которыми имеется большой разброс по массе, поэтому в первом приближении возмущающим действием менее массивных тел на более массивные можно пренебречь и рассматривать только взаимодействие несколькихмассивных тел друг на друга; во-вторых, законы движения, применимые к отдельным частицам, образующим эти тела, как нетрудно видеть, работают и на уровне самих тел, вследствие чего с очень хорошим приближением Солнце, планеты и луны можно, в свою очередь, рассматривать как частицы и не беспокоиться по поводу малых движений отдельных составляющих небесных тел! [114] И снова нам удается свести все к рассмотрению системы из «небольшого» количества тел, где расплывание начальной области в фазовом пространстве становится несущественным.
114
Этот второй факт следует считать исключительной удачей для науки, ибо без него динамическое поведение больших тел могло бы остаться непостижимым и никак не указывало бы на конкретный вид тех законов, которые управляют поведением отдельных частиц. Как мне кажется, Ньютон столь упорно настаивал на своем третьем законе в том числе и потому, что без третьего закона динамическое поведение было бы просто невозможно перенести с микроскопического уровня на макроскопический. Наряду с этим, не менее важное значение для развития естествознания имело еще одно «чудесное» совпадение, касающееся закона обратных квадратов: оказалось, что этот закон — единственный из всех степенных законов (описывающих убывающие с расстоянием силы) для которого орбиты движения вокруг центрального тела в общем случае имеют простую геометрическую форму. Что делал бы Кеплер, если бы сила всемирного тяготения была бы обратно пропорциональна не квадрату, а кубу расстояния?
Помимо небесной механики и поведения запущенных тел (камней, пуль, ядер, и т. д.), что можно рассматривать как ее частный случай, а также изучения простых систем, содержащих небольшое число частиц, — основные методы, использовавшиеся ньютоновской механикой, очевидно, не могут быть вообще отнесены к разряду «детерминистско-предсказуемых» в том смысле, о котором мы говорили выше. Общую ньютоновскую схему используют скорее для построения моделей, изучение которых позволяет делать выводы о поведении системы в целом. Некоторые точные следствия из законов движения, такие, как законы сохранения энергии, импульса и углового момента, действительно выполняются на любых масштабах. Кроме того, существуют статистические свойства, которые можно комбинировать с динамическими законами, управляющими отдельными частицами, и использовать их для общего прогнозирования поведения системы. (См. обсуждение термодинамики в главе 7; эффект расплывания в фазовом пространстве, рассмотрением которого мы занимались выше, находится в достаточно тесной
Эффект расплывания начальной области в фазовом пространстве приводит к еще одному замечательному следствию. Только подумайте: ведь он свидетельствует о том, что классическая механика, на самом деле, не в состоянии адекватно описать наш с вами мир! Я несколько преувеличиваю — но не так уж сильно. Классическая механика может достаточно точно описывать поведение жидких тел — главным образом газов, хотя (с приемлемой степенью точности) и собственно жидкостей — в том случае, когда интерес представляют общие «усредненные» свойства систем частиц; но она испытывает затруднения при попытке объяснить структуру твердых тел, которая отличается более высокой организацией. Проблемой здесь становится невозможность описать феномен сохранения твердым телом своей формы несмотря на то, что оно состоит из мириадов точечноподобных частиц, структура относительного расположения которых постоянно нарушается из-за расплывания начальной области в фазовом пространстве. Как мы теперь знаем, для того, чтобы разобраться в строении твердых тел, необходима квантовая теория, поскольку квантовые эффекты могут каким-то образом предотвратить расплывание портрета системы в фазовом пространстве. Это — весьма важный вопрос, к которому мы еще вернемся в дальнейшем (см. главы 8 и 9).
Затронутая нами тема имеет не менее важное значение и для вопроса о построении «вычислительной машины». Эффект расплывания в фазовом пространстве относится к разряду явлений, которые необходимо контролировать. Нельзя позволить слишком сильно расплываться той области фазового пространства, которая соответствует «дискретному» состоянию вычислительного устройства (такой, например, как описанная выше область R 0 ). Напомним, что даже в «бильярдном компьютере» Фредкина— Тоффоли требовались некоторые специально вводимые извне твердые стенки, необходимые для правильной работы компьютера. Объяснить «цельность» объекта, состоящего из множества частиц, можно в действительности только с помощью квантовой механики. Создается впечатление, что даже «классическая» вычислительная машина должна заимствовать некоторые принципы из квантовой физики — иначе она просто не сможет работать эффективно!
Электромагнитная теория Максвелла
В ньютоновской картине мира мы представляем, что крохотные частицы влияют друг на друга с помощью сил, действующих на расстоянии, причем если частицы не совсем точечные, то они способны отскакивать друг от друга в результате прямого физического контакта. Как уже упоминалось раньше (Глава 5. «Механистический мир динамики Ньютона»), электрические и магнитные силы (которые были известны еще с античных времен и впервые подробно изучены Уильямом Гильбертом в 1600 году и Бенджамином Франклином в 1752 году) действуют аналогично гравитационным силам, поскольку также обратно пропорциональны квадрату расстояния — хотя обе представляют собой скорее силы отталкивания, чем притяжения, действуя в соответствии с принципом «подобное отталкивает подобное»; а вместо массы мерой интенсивности их воздействия служит электрический заряд и сила магнитного полюса, соответственно. На этом уровне не существует никаких трудностей, которые препятствовали бы включению электричества и магнетизма в ньютоновскую схему. Поведение света может быть сравнительно легко описано в общем виде с позиций ньютоновской механики (хотя определенные проблемы при этом все же возникают): либо путем рассмотрения света как субстанции, состоящей из отдельных частиц («фотонов», как теперь их принято называть); либо с помощью представления его в виде волнового процесса, распространяющегося в некоторой среде (в последнем случае эту среду — «эфир» — следует считать состоящей из отдельных частиц).
То, что движущиеся электрические заряды могут создавать магнитные силы, вызывает некоторые дополнительные затруднения, но не разрушает целиком всю ньютонианскую схему. Многие математики и физики (в том числе Гаусс) предлагали системы уравнений для описания эффектов, создаваемых движущимися электрическими зарядами. В рамках общей ньютонианской схемы эти уравнения казались вполне удовлетворительными. Первым, кто бросил серьезный вызов «ньютонианской» картине мира, был, по-видимому, великий английский физик-экспериментатор Майкл Фарадей (1791–1867).
Чтобы понять суть этого вызова, необходимо прежде всего разобраться в смысле термина физическое поле . Начнем с магнитного поля. Большинству читателей случалось наблюдать за поведением железных опилок, рассыпанных на листке бумаги, который положили поверх магнита. Железные опилки поразительным образом выстраиваются вдоль так называемых «магнитных силовых линий». Представим себе, что силовые линии присутствуют в пространстве, даже если нет железных опилок. Эти силовые линии и образуют то, что мы называем магнитным полем. В каждой точке пространства это «поле» ориентировано в определенном направлении, а именно — в направлении силовой линии, проходящей через данную точку. В действительности, мы имеем в каждой точке пространства вектор , т. е. магнитное поле является примером векторного поля. (Мы можем сравнить магнитное поле с гамильтоновым векторным полем, которое было рассмотрено нами в предыдущем разделе, но теперь мы имеем векторное поле в обычном, а не фазовом пространстве.) Точно так же и тела, несущие электрический заряд, оказываются окруженными полем, только несколько иного рода, которое известно под названием электрического поля; а любое массивное тело создает вокруг себя так называемое гравитационное поле. Все это — векторные поля в обычном пространстве.