Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
На рис. 5.16 я изобразил пространство-время с двумя пространственными измерениями и одним временным.
Рис. 5.16.Световой конус в пространстве-времени Минковского (с двумя пространственными измерениями), описывающий историю световой вспышки при взрыве, произошедшем в точке О пространства-времени
Можно считать, что существует обычная временная координата t , измеряемая по вертикали, и две пространственные координаты x / c и z / c , измеряемые по горизонтали [121] . Конус с вершиной в центре — это световой конус (будущего), с центром в начале координат О пространства-времени. Чтобы по достоинству оценить его значение, представьте себе, что в точке О происходит взрыв. (Иначе говоря, взрыв происходит в начале пространства в момент времени t = 0 .) Этот световой конус описывает историю света, испущенного при взрыве. На языке двумерного пространства история вспышки света была бы окружностью, расширяющейся со скоростью
121
Причина, по которой пространственные координаты мы делим на с (скорость света), проста: это делается для того, чтобы мировые линии фотонов были наклонены под удобным углом 45° к вертикали (см. текст далее).
Часто свет бывает удобно описывать не электромагнитными волнами, а как поток частиц, называемых фотонами . Мы можем мысленно представлять себе «фотон» как крохотный «пакет» электромагнитного поля, осциллирующего с высокой частотой. Термин «волновой пакет» физически более приемлем в контексте квантовых описаний, к которым мы перейдем в следующей главе, но пока для нас будут полезны и «классические» фотоны. В свободном пространстве фотоны всегда движутся по прямолинейным траекториям с постоянной скоростью с . Это означает, что, изображенная на картине пространства-времени Минковского мировая линия фотона всегда имеет вид прямой, образующей с вертикалью угол 45°. Фотоны, образовавшиеся при взрыве в точке О пространства-времени, описывают световой конус с вершиной в О .
Описанными выше свойствами должны обладать все точки пространства-времени. В начале пространства-времени нет ничего особенного: точка О ничем не отличается от любой другой точки. Следовательно, в любой точке пространства-времени должен быть свой световой конус, имеющий такой же смысл, как и световой конус, исходящий из начала пространства-времени. История любой вспышки света, или мировые линии фотонов, если угодно воспользоваться корпускулярным описанием света, всегда располагаются на поверхности светового конуса с вершиной в каждой точке пространства-времени — тогда как история любой материальной частицы всегда должна располагаться внутри соответствующего светового конуса. Это показано на рис. 5.17. Семейство световых конусов во всех точках пространства-времени можно рассматривать как часть геометрии Минковского пространства-времени.
Рис. 5.17.Картина геометрии Минковского
Что такое геометрия Минковского? Самая важная ее часть — структура светового конуса, хотя геометрия Минковского ею не исчерпывается. В этой геометрии существует понятие «расстояния», во многом аналогичное определению расстояния в евклидовой геометрии. В трехмерной евклидовой геометрии расстояние rот произвольной точки до начала координат, выраженное через обычные декартовы координаты, определяется соотношением
r 2 = x 2 + y 2 + z 2
Рис. 5.18.Сравнение «расстояний», измеренных в (а) евклидовой геометрии и (б) геометрии Минковского (здесь «расстояние» означает «прожитое время»)
(См. рис. 5.18 а. Это — всего лишь теорема Пифагора; возможно, двумерный вариант этого соотношения более привычен читателю.) В нашей трехмерной геометрии Минковского выражение для расстояния очень похоже на евклидово (рис. 5.18 б); существенное отличие состоит в том, что в геометрии Минковского это выражение содержит два знака минус:
Каков физический смысл величины «расстояния» s в этом выражении? Предположим, что мы рассматриваем точку Р с координатами ( t , x / c , y / c , z / c ), или ( t , x / c , z / c ) в трехмерном случае; см. рис. 5.16 — она лежит в световом конусе (будущего) точки О . Тогда прямолинейный отрезок ОР может представлять часть истории какой-то материальной частицы, например, испущенной при взрыве. «Длина» Минковского s отрезка ОР допускает прямую физическую интерпретацию. Это — продолжительность (длина) интервала времени, реально прожитого частицей между событиями О и Р ! Иначе говоря, если бы существовали очень прочные и точные часы, намертво прикрепленные к частице [122] , то разность между их показаниями в точках О и Р составила бы ровно s единиц времени. Вопреки ожиданиям, величина t сама по себе не описывает время, измеряемое этими гипотетическими часами — за исключением того случая, когда часы «покоятся» в нашей системе координат (т. е. имеют фиксированные значения координат х / с , у / с , z / c ),
122
Действительно, в некотором смысле, любая квантовомеханическая частица, встречающаяся в природе, сама по себе является часами. Как мы узнаем из главы 6, с любой квантовой частицей связано свое колебание, частота которого пропорциональна массе частицы (см. гл. 6 «Начало квантовой теории»). Именно этот эффект позволил создать точнейшие современные (атомные и ядерные) часы.
123
Тем не менее для событий, разделенных отрицательными значениями s 2 , величина с 2 – s 2 имеет смысл, равняясь обычному расстоянию до того наблюдателя, которому события кажутся одновременными (см. далее).
Понятие «расстояния» в смысле Минковского одинаково хорошо применимо к любойпаре точек в пространстве-времени, одна из которых лежит внутри световою конуса другой, так что частица может двигаться из одной точки в другую. Мы просто будем считать, что начало координат О перенесено в какую-то иную точку пространства-времени. Кроме того, расстояние по Минковскому между точками соответствует интервалу времени, отсчитываемого часами, которые равномерно и прямолинейно движутся из одной точки в другую. Когда в качестве частицы выступает фотон, и расстояние в смысле Минковского обращается в нуль, мы получаем две точки, одна из которых лежит на световом конусе другой — что позволяет строитьсветовой конус для последней.
Основная структура геометрии Минковского со столь причудливой мерой «длины» мировых линий, интерпретируемой как время, измеряемое (или «прожитое») физическими часами, несет в себе самую суть специальной теории относительности. В частности, читателю, возможно, известен так называемый «парадокс близнецов» в СТО :
один из братьев-близнецов остается на Земле, другой совершает путешествие на соседнюю звезду, двигаясь туда и обратно с огромной скоростью, приближающейся к скорости света. По возвращении выясняется, что близнецы состарились неодинаково: путешественник все еще молод, а его брат, остававшийся на Земле, стал дряхлым стариком. «Парадокс близнецов» легко описывается в терминах геометрии Минковского, и всякий может без труда понять, почему это явление — хотя и способное озадачить — парадоксальным все же не является. Мировая линия АС принадлежит тому из близнецов, который остается дома, тогда как мировая линия близнеца-путешествен-ника состоит из двух отрезков А В и ВС , соответствующих полету на звезду и возвращению на Землю (рис. 5.19).
Рис. 5.19.Так называемый «парадокс близнецов» специальной теории относительности, трактуемый с помощью неравенства треугольника в геометрии Минковского. (Для сравнения приведен и евклидов случай.)
Близнец-домосед проживает время, измеряемое расстоянием в смысле Минковского АС , тогда как близнец-путешественник проживает время, измеряемое суммой [124] двух расстояний АВ и ВС . Эти времена не равны, и мы обнаруживаем, что
124
«Излом» на мировой линии путешественника в точке В мог бы вызвать беспокойство у читателя: судя по картинке, путешественник в этой точке должен испытывать бесконечно большое ускорение. Но это несущественно. При конечном ускорении мировая линия путешественника будет иметь в точке В просто закругленный, или сглаженный изгиб, который очень слабо скажется на полном времени, которое путешественник проживает, и которое по-прежнему измеряется «длиной» (в смысле Минковского) всей его мировой линии.
АС > АВ + ВС .
Это неравенство показывает, что время, прожитое близнецом-домоседом, действительно больше времени, прожитого близнецом-путешественником.
Полученное неравенство очень похоже на хорошо известное неравенство треугольникаиз обычной евклидовой геометрии ( А , B и С теперь — три точки в евклидовомпространстве):