Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

АС < АВ + ВС ,

которое утверждает, что сумма двух сторон треугольника всегда больше третьей стороны. Это неравенство мы не считаем парадоксом! Мы прочно усвоили идею о том, что евклидова мера расстояния вдоль пути из одной точки в другую (в нашем случае — из А в С ), зависит от того, какой путь мы в действительности выберем. (В рассматриваемом примере двумя путями служат АС и более длинный изломанный маршрут ABC .) Неравенство треугольника — частный случай общего утверждения, которое гласит, что кратчайшее расстояние между двумя точками (в данном случае А и С ) измеряется по прямой, их соединяющей (отрезок АС ). Изменение знака неравенства на обратный при измерении расстояний в смысле Минковского происходит вследствие изменения знаков в определении «расстояния», в результате чего отрезок АС ,

измеряемый по Минковскому, оказывается «длиннее», чем ломаный маршрут ABC . Таким образом, «неравенство треугольника» в геометрии Минковского в более обобщенной формулировке говорит о том, что самой длинной(в смысле наибольшего прожитого времени) среди мировых линий, соединяющих два события, является прямая (т. е. траектория, соответствующая равномерному движению). Если оба близнеца стартуют из точки А и завершают свой путь в точке С , и при этом первый близнец движется прямо из А в С без ускорения, а второй — с ускорением, то первый близнец к моменту встречи со вторым всегда успевает прожить более длинный интервал времени.

Может показаться возмутительным вводить столь странную и сильно расходящуюся с нашими интуитивными представлениями концепцию меры времени. Однако ныне имеется огромное количество экспериментальных данных, свидетельствующих о правомерности такого положения. Например, существует много субатомных частиц, которые распадаются (т. е. превращаются в другие частицы) в определенной шкале времени. Иногда такие частицы движутся со скоростями, очень близкими к скорости света (например, так происходит с космическими лучами, попадающими на Землю из космического пространства, или в созданных человеком ускорителях элементарных частиц), и их времена распада оказываются при этом «растянуты» в полном согласии с вышеизложенными рассуждениями. Еще удивительнее другое: теперь, когда стало возможным изготовить особо точные («ядерные») часы, мы можем непосредственнообнаружить эффекты замедления хода часов, перевозимых на высокоскоростных самолетах, летающих на небольшой высоте — причем результаты измерений согласуются с мерой «расстояния» s в смысле Минковского, а не с t ! (Строго говоря, с учетом высотыприходится принимать во внимание небольшие дополнительные гравитационные эффекты, предсказываемые общейтеорией относительности, но они также согласуются с наблюдениями — см. следующий раздел.) Кроме того, существует много других явлений, тесно связанных со всей теоретической основой СТО , постоянно подтверждающейся вплоть до мельчайших деталей. Одно из них — знаменитое соотношение Эйнштейна

Е = mc 2 ,

которое по существу устанавливает равноправие энергии и массы. (В конце этой главы мы познакомимся с некоторыми необычайно заманчивыми следствиями из этого соотношения.)

Я еще не объяснил, каким образом принцип относительности оказывается реально включенным в намеченную выше схему. Каким образом происходит, что наблюдатели, движущиеся прямолинейно и равномерно с различными скоростями, могут оказаться эквивалентнымис точки зрения геометрии Минковского? Каким образом ось времени на рис. 5.16 («стационарный наблюдатель») может быть полностью эквивалентной некоторой другой прямолинейной мировой линии, например, отрезку ОР («движущийся наблюдатель»)? Задумаемся сначала над особенностями евклидовойгеометрии. Ясно, что в ней две произвольные несовпадающие прямые совершенно эквивалентны по отношению к геометрии в целом. Можно мысленно представить себе, что все евклидово пространство «скользит» по самому себе как «жестко скрепленное целое» до тех пор, пока одна прямая не совпадет с другой. Представьте себе двумерныйслучай — евклидову плоскость. Можно представить себе листок бумаги, жестко скользящий по плоской поверхности, до тех пор, пока некоторая прямая, проведенная на листке бумаги, не совпадет с прямой, проведенной на поверхности. Это «жесткое» движение сохраняет структуру геометрии. Аналогичное утверждение справедливо и относительно геометрии Минковского, хотя это и менее очевидно, так что следует проявлять особую осмотрительность, договариваясь о том, какой смысл надлежит вкладывать в термин «жесткое движение». Вместо листка бумаги следует рассматривать особый материал (возьмем сначала для простоты двумерный случай), на котором прямые с углом наклона 45° сохраняют этот угол, тогда как сам материал может растянуться в одном направлении под углом 45° и, соответственно, сжаться в другом направлении под углом 45°. Такая ситуация изображена на рис. 5.20. На рис. 5.21 я попытался показать, что происходит в трехмерном случае.

Рис. 5.20.Движение Пуанкаре в двумерном пространстве-времени

Рис. 5.21.Движение Пуанкаре в трехмерном пространстве-времени. На рисунке справа изображены пространства, одновременные для наблюдателя S , на рисунке слева — одновременные для наблюдателя М . Обратите внимание, что, по мнению наблюдателя S , событие R предшествует событию Q , тогда как, с точки зрения наблюдателя М , событие Q предшествует событию R . (Движение в данном случае считается пассивным, т. е. приводит лишь к различным описаниям двумя наблюдателями S и М одного и того же пространства-времени.)

Эта разновидность «жесткого движения» пространства Минковского, называемая движением Пуанкаре (или неоднородным движением Лоренца), может выглядеть не очень «жесткой», но она сохраняет все расстояния в смысле Минковского, а «сохранение всех расстояний» — это ни что иное, как смысл понятия «жесткий» в евклидовом

случае. Принцип специальной относительности утверждает, что законы физики при таких движениях Пуанкаре пространства-времени остаются неизменными. В частности, «стационарный» наблюдатель S , мировая линия которого совпадает с осью времени на нашем исходном изображении пространства-времени Минковского (рис. 5.16), имеет дело с физикой, совершенно эквивалентной физике «движущегося» наблюдателя М с мировой линией вдоль прямой ОР .

Каждая координатная плоскость t = const представляет для наблюдателя S «пространство» в какой-то один момент «времени», т. е. семейство событий, которые он считает одновременными(происходящими в «одно и то же время»). Назовем эти плоскости одновременными пространстваминаблюдателя S . Когда же мы переходим к другому наблюдателю М , то с необходимостью переводим наше исходное семейство одновременных пространств в некоторое новое семейство с помощью движения Пуанкаре, что позволяет нам получить одновременные пространства для наблюдателя М [125] . Обратите внимание на то, что одновременные пространства наблюдателя М выглядят «наклоненными вверх» (рис. 5.21). Если мыслить в терминах жестких движений в евклидовой геометрии, то может показаться, что наклон на рис. 5.21 изображен не в ту сторону, но именно таким его следует ожидать в геометрии Минковского. Наблюдатель S думает, что все события на любой плоскости t = const происходят одновременно, а наблюдатель М должен придерживаться другого мнения: ему кажется, что одновременно происходят все события на каждом из «наклоненных» одновременных пространств! Геометрия Минковского сама по себе не содержит единственного понятия «одновременности»; но каждый наблюдатель, движущийся равномерно и прямолинейно, имеет свое собственное представление о том, что значит «одновременно».

125

С точки зрения наблюдателя М , эти пространства событий одновременны в смысле эйнштейновского определения одновременности, которое использует световые сигналы, посылаемые наблюдателем М и отражающиеся обратно к М из рассматриваемых точек пространства-времени. См., например, Риндлер [1982].

Рассмотрим два события R и Q на рис. 5.21. С точки зрения наблюдателя S событие R происходит раньше события Q , так как R лежит в более раннем одновременном пространстве, чем Q . Но с точки зрения наблюдателя М все будет наоборот, и событие Q окажется в более раннем одновременном пространстве, чем R . Таким образом, для одного наблюдателя событие R происходит раньше события Q , а для другого наблюдателя — позже! (Так может случиться лишь потому, что события R и Q , как принято говорить, пространственно разделены, что означает следующее: каждое событие находится вне светового конуса другого события, в результате чего ни одна материальная частица или фотон не могут совершить путешествие от одного события к другому.) Даже при очень медленных относительных скоростях для точек, разделенных большими расстояниями, имеют место значительные различия в хронологической последовательности. Представим себе двух людей, медленно проходящих друг мимо друга на улице. События в туманности Андромеды (ближайшей большой галактики, находящейся на расстоянии 20 000 000 000 000 000 000 км от нашей собственной галактики — Млечного Пути), одновременные по мнению этих двух прохожих, в тот момент, когда они поравняются друг с другом — могут отстоять по времени друг от друга на несколько суток (рис. 5.22).

Рис. 5.22.Два наблюдателя А и В медленно проходят мимо друг друга. Их мнения относительно того, стартовал ли космический флот Андромеды в момент, когда они поравнялись, существенно отличаются

В то время как для одного из прохожих космический флот, отправленный с заданием уничтожить все живое на Земле, уже находится в полете, для другого прохожего само решение относительно отправки космического флота в рейд еще не принято!

Общая теория относительности Эйнштейна

Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни все же падают не одновременно! Галилей внезапно понял, что, если бы сопротивление воздуха можно было свести к нулю, то перья и камни падали бы на Землю одновременно.) Потребовалось три столетия, прежде чем глубокое значение этого открытия было по достоинству осознано и стало краеугольным камнем великой теории. Я имею в виду общую теорию относительности Эйнштейна — поразительное описание гравитации, для которого, как нам вскоре станет ясно, потребовалось введение понятия искривленного пространства-времени !

Какое отношение имеет интуитивное открытие Галилея к идее «кривизны пространства-времени»? Каким образом могло получиться, что эта концепция, столь явно отличная от схемы Ньютона, согласно которой частицы ускоряются под действием обычных гравитационных сил, оказалась способной не только сравняться в точности описания с ньютоновской теорией, но и превзойти последнюю? И потом, насколько верным будет утверждение, что в открытии Галилея было нечто такое, что не было позднее включено в ньютоновскую теорию?

Поделиться:
Популярные книги

Господин следователь

Шалашов Евгений Васильевич
1. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Егерь

Астахов Евгений Евгеньевич
1. Сопряжение
Фантастика:
боевая фантастика
попаданцы
рпг
7.00
рейтинг книги
Егерь

Шесть принцев для мисс Недотроги

Суббота Светлана
3. Мисс Недотрога
Фантастика:
фэнтези
7.92
рейтинг книги
Шесть принцев для мисс Недотроги

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Ротмистр Гордеев

Дашко Дмитрий Николаевич
1. Ротмистр Гордеев
Фантастика:
фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Мама для дракончика или Жена к вылуплению

Максонова Мария
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Мама для дракончика или Жена к вылуплению

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Невеста драконьего принца

Шторм Елена
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Невеста драконьего принца