Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Конечно, мы не наблюдаем ничего подобного в нашем мире — или, лучше сказать, что мы не обнаруживаем одновременного сосуществованияподобных вещей с явлениями обычного порядка. Ведь если бы все , что мы видели, было бы явлениями обратного порядка, подобного описанному выше, у нас не было бы проблем. Нам нужно было бы просто поменять местами «прошлое» и «будущее», «до» и «после» и т. д. во всех наших описаниях. Время следовало бы тогда считать текущим в направлении обратном по отношению к первоначально выбранному, и такой мир мог бы описываться так же, как и наш. Здесь я, однако, хочу рассмотреть другую возможность, в точности согласующуюся с симметричными во времени уравнениями физики, а именно — когда разбивающийся и самовосстанавливающийся стаканы могут сосуществовать.

В этом мире мы были бы не в состоянии восстановить привычные описания событий одним только изменением наших соглашений о направлении движения времени. Конечно, наш мир оказывается не таким — но почему? Чтобы разобраться с

этим, я для начала попросил бы вас представить такой мир и подумать над тем, как описывать события, происходящие в нем. Согласитесь, что в подобном мире мы могли бы хорошо описывать крупные макроскопические конфигурации — такие как полные стаканы воды, неразбитые яйца, или кусочки сахара в руке, являющиеся «причинами»; и микроскопические, быть может, тонко скоррелированные движения отдельных атомов, представляющие «следствия» — независимо от того, лежат ли «причины» в прошлом или будущем своих «следствий».

Почему же в мире, в котором живем мы, именно причины всегда предшествуютследствиям или, иными словами, почему точно скоординированные движения частиц возникают только послекрупномасштабных изменений физического состояния, а не передними? Чтобы лучше разобраться в таком положении дел, мне нужно ввести понятие энтропии . Грубо говоря, энтропия системы есть мера ее явного беспорядка. (Позже я дам более точное определение.) Таким образом, разбитый стакан и разлитая по полу вода находятся в состоянии с большей энтропией, чем целый заполненный водой стакан на столе. Приготовленная яичница-болтунья обладает большей энтропией, чем свежее неразбитое яйцо; подслащенный кофе обладает большей энтропией, чем кофе с нерастворенным куском сахара в нем. Подобные низкоэнтропийные состояния выглядят как бы «специально упорядоченными» некоторым явным образом, а высокоэнтропийные состояния — менее «специально упорядоченными».

Здесь важно подчеркнуть, что говоря о «специальности» (или, скажем, «особенности») состояния с низкой энтропией, мы, на самом деле, имеем ввиду именно явную«специальность». Если этого не оговорить, то при более детальном рассмотрении мы могли бы увидеть, что высокоэнтропийные состояния в подобных ситуациях будуттакими же «специально упорядоченными», как и низкоэнтропийные, благодаря чрезвычайно точной координации движений отдельных частиц. Например, кажущееся случайным движение молекул воды, просочившейся между половицами после того, как стакан разбился, является, на самом деле, вполне специальным: эти перемещения настолько точны, что если их обратить, то получится то самое исходное низкоэнтропийное состояние, в котором восстановленный стакан покоится на столе. (Это должно быть именно так, поскольку обращение всех этих движений полностью соответствует обращению направления времени, в результате которого стакан, разумеется, восстановил бы себя и запрыгнул обратно на стол.) Но подобное скоординированное движение всех молекул воды — совсем не та «специальность», которую мы имеем ввиду, говоря о низкой энтропии. Энтропия относится к явномубеспорядку. Порядок же, относящийся к точной координации движений частиц, не есть явный порядок, и потому он не приводит к понижению энтропии системы. Таким образом, упорядочивание молекул разлитой жидкости, в данном случае, не учитывается, и ее энтропия остается высокой. В то же время, явныйпорядок в восстановленномстакане воды дает низкое значение энтропии. Все дело здесь в том, что с конфигурацией восстановленного и заполненного стакана воды совместимо относительно немного возможных движений частиц; в то время как движений, совместимых с конфигурацией слегка нагретой воды, протекающей между щелями в половицах, — существенно больше.

Второе начало термодинамики гласит,что энтропия изолированной системы возрастает со временем(или остается неизменной в случае обратимых систем).Теперь становится очевидным, что мы совершенно правильно не рассматриваем скоординированное движение частиц как признак низкой энтропии, поскольку в этом случае «энтропия» системы, в соответствии с ее определением, всегда оставалась бы постоянной. Понятие энтропии должно быть связано только с явным беспорядком. Для системы, изолированной от всей остальной вселенной, ее полная энтропия возрастает, так что, если подобная система начинает свою эволюцию из состояния с некоторой явной упорядоченностью, то с течением времени этот порядок неизбежно разрушается и присущие ей особые свойства превращаются в «бесполезно» скоординированное движение частиц.

Может показаться, что второе начало действует как некий предвестник упадка, поскольку оно утверждает существование безжалостного универсального физического принципа, напоминающего нам о том, что всякое упорядоченное состояние подвержено непрерывному разрушению. Позднее мы увидим, что это пессимистическое заключение справедливо не всегда!

Что такое энтропия?

Каково же точное определение энтропии физической системы? Мы уже знаем, что это некая мера явного беспорядка — но что означают такие не очень строгие понятия, как «явный» и «беспорядок»? Может возникнуть мысль, что энтропия — это величина, вообще не имеющая четкого физического определения. Кроме того, имеется еще одно обстоятельство, связанное со вторым началом термодинамики, которое еще в большей степени усиливает

ощущение нестрогости обсуждаемого понятия: энтропия не остается постоянной и возрастает только в так называемых необратимых системах. Но что значит «необратимых»? На микроскопическом уровне, когда мы принимаем в расчет движения всех частиц, все системы оказываются обратимыми! Обычномы полагаем, что падение стакана со стола и его разбивание, разбалтывание яйца или растворение сахара в кофе — суть процессы необратимые; в то же время, столкновения друг с другом небольшого числа частиц — процесс обратимый, так же, впрочем, как и вообще любой процесс, в котором путем некоторых ухищрений нам удается избежать превращения кинетической энергии в тепло. Термин «необратимый» служит нам, главным образом, лишь для указания на то, что проследить за микроскопическими движениями отдельных частиц или управлять ими было невозможно. Собственно, эти неконтролируемые движения и есть «тепло». Таким образом, может создаться впечатление, будто бы понятие «необратимости» обязано своим происхождением чисто «практическим» соображениям. Мы, конечно, и в самом деле не можем на практикеотделить белок от желтка в разболтанном яйце, хотя подобная процедура и не противоречит законам механики. Поэтому возникает вопрос: а не будет ли все-таки наше определение энтропии зависеть от того, какие процессы практически осуществимы, а какие — нет?

Как уже говорилось в главе 5, физическое понятие энергии, так же как и импульса, и углового момента, имеютвполне четкие математические определения в терминах положений частиц, их скоростей, масс и действующих на них сил. А можем ли мы сходным образом определить понятие «явного беспорядка», которое, в свою очередь, необходимо для придания точного математического смысла понятию энтропии? Очевидно, что «явное» для одного наблюдателя может не быть таковым для другого. И вообще, не находится ли это «явное» в прямой зависимости от точности, с которой тот или иной наблюдатель способен изучать данную систему? Наблюдатель, располагающий более точной измерительной аппаратурой, способен получить намного больше информации о микроскопическом строении системы, чем другой наблюдатель, использующий менее совершенное оборудование. В этом случае один наблюдатель сможет обнаружить больше «скрытого порядка», чем другой, и он, разумеется, зафиксирует более низкий уровень энтропии данной системы, чем его коллега. Может даже сложиться впечатление, что и личные эстетические вкусы каждого из наблюдателей способны оказать решающее влияние на их выбор между «порядком» или «беспорядком». Предположим, что мы пригласили некоего художника, для которого россыпь осколков стекла на полу окажется настоящим произведением «искусства упорядочивания» по сравнению с безобразным, отвратительным стаканом, банально покоящимся на краю стола! Понизится лии в самом деле энтропия системы после ее оценки наблюдателем с таким тонким артистическим восприятием?

Несмотря на все проблемы, связанные с субъективностью некоторых наших суждений, понятие энтропии оказывается замечательным образом применимо всякий раз, когда речь идет о точном научном описании — каковым и является само понятие энтропии! Причина этого заключается в том, что изменения, вызванные переходами системы от порядка к беспорядку, если их выразить в терминах микроскопических положений и скоростей частиц, поистине колоссальны и (почти во всех случаях) превосходят любые заметные на глаз отличия точек зрения на то, что считать «явным порядком» на макроскопическом уровне, а что — нет. В частности, любое заключение художника или ученого, относительно того, какой из стаканов обладает большим порядком — целый или разбитый, практически не имеет никакого отношения к их реальной энтропии. Намного больший вклад в энтропию дает случайное движение частиц, вызывающее незначительное нагревание стакана и воды, и растекание воды после удара стакана с водою о пол.

Теперь, чтобы точно сформулировать понятие энтропии, вернемся к идее фазового пространства , введенного в главе 5. Напомним, что фазовое пространство системы имеет, как правило, гигантское число измерений, а каждая его точка изображает с максимальной детализацией мгновенную конфигурацию системы. Подчеркнем, что «одна-единственная»точка фазового пространства определяет одновременно положения и импульсы всехотдельных частиц, составляющих рассматриваемую физическую систему. Все, что нам необходимо сейчас для определения энтропии, это сгруппировать вместе все те микроскопические состояния, которые выглядят совершенно одинаковыми с точки зрения их явных(т. е. макроскопических) свойств. Другими словами, нам необходимо разбить наше фазовое пространство на области (рис. 7.3),

Рис. 7.3.Гранулирование фазового пространства на области, соответствующие макроскопически неотличимым состояниям. Энтропия пропорциональна логарифму фазового объема

в каждой из которых различные точки изображают физические системы, отличающиеся на микроскопическом уровне расположением и скоростями частиц, но которые при этом совершенно неразличимы с точки зрения макроскопического наблюдателя, для которого все точки любой такой конкретной области будут описывать одну и ту жефизическую систему. Подобное разбиение фазового пространства на области называется гранулированием фазового пространства.

Поделиться:
Популярные книги

Эволюционер из трущоб. Том 4

Панарин Антон
4. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 4

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Газлайтер. Том 14

Володин Григорий Григорьевич
14. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 14

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Адвокат вольного города 3

Кулабухов Тимофей
3. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Адвокат вольного города 3

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

На границе империй. Том 8

INDIGO
12. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Жена моего брата

Рам Янка
1. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Жена моего брата

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Законы Рода. Том 8

Flow Ascold
8. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 8