Чтение онлайн

на главную - закладки

Жанры

Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:

Предположим, что мы выбрали какую-то другую пару противоположных направлений, например, вправо и влево, где

| E->) = | E^) + | EV), | P->) = | P^) + | PV)

и

| E<-) = | E^) — | EV), | P<-) = | P^) — | PV).

Тогда мы находим (если угодно, можете проверить выкладки):

| E->) | P<-) — | E<-) | P->) = (| E^) + | EV) (| P^) — | PV) — (| E^) — | EV)) (| P^) + | PV)) = | E^)| P^) + | EV)| P^) — | E^)| PV) — | EV)| PV) — | E^)| P^) + | EV)| P^) — | E^)| PV) + | EV)| PV) = - 2 (| E^)| PV) — | EV)| P^) = - 2 | Q )

т. е. мы получили (с точностью до несущественного множителя - 2 ) то же самое состояние, из которого мы «стартовали». Таким образом, наше исходное состояние можно одинаково хорошо считать линейной суперпозицией электрона со спином вправо, позитрона со спином влево, и электрона со спином влево, позитрона со спином вправо! Выписанное выше выражение полезно, если мы решили измерять спин электрона в направлении вправо-влево вместо направления вверх-вниз. Если мы обнаружим, что спин электрона действительно направлен

вправо, то состояние системы скачком переходит в | E->) | P<-), поэтому спин позитрона направлен влево. С другой стороны, если мы обнаружим, что спин электрона направлен влево, то состояние системы скачком переходит в | E<-) | P->), поэтому спин позитрона направлен вправо. Если бы мы стали измерять спин электрона в любом другом направлении, то получили бы соответствующую ситуацию: спиновое состояние позитрона мгновенно перешло бы скачком либо в измеряемое направление, либо в противоположное направление, в зависимости от измерения спина электрона.

Почему мы не можем моделировать спины наших частиц — электрона и позитрона аналогично тому, как мы поступили в приведенном выше примере с черным и белым шарами, извлекаемыми из ящика? Будем рассуждать на самом общем уровне. Вместо черного и белого шаров мы могли бы взять два каких-нибудь технических устройства Еи Р, первоначально образовывавших единое целое, а затем начавших двигаться в противоположные стороны. Предположим, что каждое из устройств Еи Рспособно давать ответ ДАили НЕТна измерение спина в любом заданном направлении. Этот ответ может полностью определяться технической начинкой устройства при любом выборе направления — или, может быть, устройство дает только вероятностные ответы (вероятность определяется его технической начинкой) — но при этом мы предполагаем, что после разделения каждое из устройств Е и Р ведет себя совершенно независимо от другого.

Поставим с каждой стороны измерители спина, один из которых измеряет спин Е, а другой — спин Р. Предположим, что каждый измеритель обладает тремя настройками для измерения направления спина при каждом измерении, например, настройками А , В , С для измерителя спина Еи настройками А ', В ', С ' для измерителя спина Р. Направления А ', В ', С ' должны быть параллельны, соответственно, направлениям А , В , и С . Предполагается также, что все три направления А , В , и С лежат в одной плоскости и образуют между собой попарно равные углы, т. е. углы в 120 ° (рис. 6.31).

Рис. 6.31.Простая версия парадокса ЭПР, принадлежащая Дэвиду Мермину, и теорема Белла, показывающие, что существует противоречие между локальным реалистическим взглядом на природу и результатами квантовой теории, E– измеритель и Р– измеритель каждый независимо имеет по три настройки для направлений, в которых они могут измерять спины соответствующих частиц (электрона и позитрона)

Предположим теперь, что эксперимент повторяется многократно и дает различные результаты для каждой из настроек. Иногда Eизмерительфиксирует ответ ДА(т. е. спин направлен вдоль измеряемого направления А , В , и С ), иногда фиксирует ответ НЕТ(т. е. спин имеет направление, противоположное тому, в котором производится измерение). Аналогично, Ризмерительфиксирует иногда ответ ДА, иногда — НЕТ. Обратим внимание на два свойства, которыми должны обладать настоящие квантовые вероятности:

( 1 ) Если настройки устройств Еи Р одинаковы(т. е. А совпадает с A ' и т. д.), то результаты измерений, производимых с помощью устройств Еи Р, всегда не согласуются между собой(т. е. Eизмерительфиксирует ответ ДАвсякий раз, когда Ризмерительдает ответ НЕТ, и ответ НЕТвсякий раз, когда Ризмерительдает ответ ДА).

( 2 ) Если лимбы настроек могут вращаться и установлены случайно, т. е. полностью независимо друг от друга, то два измерителя равновероятно дают как согласующиеся, так и не согласующиесярезультаты измерений.

Нетрудно видеть, что свойства ( 1 ) и ( 2 ) непосредственно следуют из приведенных выше правил квантовых вероятностей. Мы можем предположить, что Eизмерительсрабатывает первым. Тогда Ризмерительобнаруживает частицу, спиновое состояние которой имеет направление, противоположное измеренному Eизмерителем, поэтому свойство ( 1 ) следует немедленно. Чтобы получить свойство ( 2 ), заметим, что для измеряемых направлений, образующих между собой углы в 120 °, если Eизмерительдает ответ ДА, то Рнаправлениерасположено под углом 60 ° к тому спиновому состоянию, на которое действует Ризмеритель, а если Eизмерительдает ответ НЕТ, то Рнаправлениеобразует угол 120 ° с этим спиновым состоянием. С вероятностью 3 / 4 = ( 1 / 2 )( 1 + cos60 °) измерения согласуются, и с вероятностью 1 / 4 = ( 1 / 2 )( 1 + cos 120 °) они не согласуются. Таким образом, усредненная вероятность для трех настроек Р измерителяпри условии, что Eизмерительдает ответ ДА, составляет ( 1 / 3 )( 0 + 3 / 4 + 3 / 4 ) = 1 / 2 для ответа ДА, даваемого Ризмерителем, и ( 1 / 3 )( 1 + 1 / 4 + 1 / 4 ) = 1 / 2 для

ответа НЕТ , даваемого Р измерителем, т. е. результаты измерений, производимых Е– и Ризмерителями, равновероятно согласуются и не согласуются. Аналогичная ситуация возникает и в том случае, когда Eизмерительдает ответ НЕТ. Это и есть свойство ( 2 ) (см. Глава 6. «Спин и сфера Римана состояний»).

Замечательно, что свойства ( 1 ) и ( 2 ) не согласуются с любой локальной реалистической моделью (т. е. с любой разновидностью устройств рассматриваемого типа)! Предположим, что у нас есть такая модель, Eмашинуследует приготовить для каждого из возможных измерений А , В или С . Заметам, что если бы ее следовало готовить только дам получения вероятностногоответа, то Pмашина(в соответствии со свойством ( 1 )) не могла бы достовернодавать результаты измерения, не согласующиеся с результатами измерения Eмашины. Действительно, обе машины должны давать свои ответы, определенным образом приготовленные заранее, на каждое из трех возможных измерений. Предположим, например, что эти ответы должны быть ДА, ДА, ДА, соответственно, для настроек А, В, С; тогда правая частица должна быть приготовлена так, чтобы давать ответы НЕТ, НЕТ, НЕТпри соответствующих трех настройках. Если же вместо этого приготовленные ответы левой частицы гласят: ДА, ДА, НЕТ, то ответами правой частицы должны быть НЕТ, НЕТ, ДАВсе остальные случаи по существу аналогичны только что приведенным. Попытаемся теперь выяснить, согласуется ли это со свойством ( 2 ). Наборы ответов ДА, ДА, ДА/ НЕТ, НЕТ, НЕТне слишком многообещающи, так как дают 9 случаев несоответствия и 0 случаев соответствия при всех возможных парах настроек А / А ', А / В ', А / С ', В / А ' и т. д. А как обстоит дело с наборами ДА, ДА, НЕТ/ НЕТ, НЕТ, ДАи тому подобными ответами? Они дают 5 случаев несоответствия и 4 случая соответствия. (Чтобы убедиться в правильности последнего утверждения, произведем подсчет случаев: Д/ Н, Д/ Н, Д/ Д, Д/ Н, Д/ Н, Д/ Д, Н/ Н, Н/ Н, Н/ Д. Мы видим, что в 5 случаях ответы не согласуются и в 4 случаях согласуются.) Это уже гораздо ближе к тому, что требуется для свойства ( 2 ), но еще недостаточно хорошо, так как случаев несоответствия ответов должно быть столько же, сколько случаев соответствия! Для любой другой пары наборов возможных ответов, согласующихся со свойством ( 1 ), мы снова получили бы соотношение 5 к 4 (за исключением наборов НЕТ, НЕТ, НЕТ/ ДА, ДА, ДА, дам которых соотношение было бы хуже — снова 9 к 0 ). Не существует набора приготовленных ответов, который могли бы дать квантово-механические вероятности. Локальные реалистические модели исключаются! [164]

164

Это настолько замечательный и важный результат, что стоит изложить еще один его вариант. Предположим, что существуют всего лишь две настройки для Eизмерителя: вверх [^] и вправо [->], и две настройки для Ризмерителя— под углом 45 ° к направлению вправо вверх

и под углом 45 ° к направлению вправо вниз.

Предположим, что реальныенастройки для Е– и Ризмерителей— соответственно [->] и

Тогда вероятность того, что Е– и Ризмерениядадут согласующиеся результаты, равна ( 1 / 2 )( 1 + cos135 °) = 0 , 146 …, что чуть меньше 15 %. Длинная последовательность экспериментов при таких настройках, например,

Е: ДННДНДДДНДДННДННННДДН

Р: НДДНННДНДННДДНДДНДННД

даст нам согласие лишь немного меньше 15 %. Предположим теперь, что на Ризмеренияникак не влияет E настройка— т. е. что еслиEнастройкабыла бы [^], а не [->], то исходы Ризмеренийбыли бы такими же, а так как угол между [^] и

такой же, как между [->] и

,

то вероятность согласия между исходами Pизмеренийи новых Еизмерений(обозначим их, например, E'- измерениями) по-прежнему была бы лишь немного меньше 15 %. С другой стороны, если Eнастройкабыла бы [->], как прежде, а Рнастройкабыла бы

а не

то серия Ерезультатовосталась бы такой же, как прежде, а новая серия Ррезультатов, которую мы обозначим, например, Р', была бы в согласии лишь немногим меньше 15 % с исходной серией Ерезультатов. Отсюда следует, что согласие между Р'- измерениеми Е' — измерениеммогло бы быть не выше 45 % (= 15% + 15% + 15%), если бы эти измерения производились бы, соответственно, при настройках

и [^]. Но угол между

и [^] равен 135 °, а не 45 °, поэтому вероятность согласия должна была бы быть чуть больше 85 %, а не 45 %. Это — противоречие, показывающее, что допущение, согласно которому выбор измерения, произведенного Еизмерителем, не может влиять на результаты Ризмерений( и наоборот ) должно быть ложно! За этот пример я признателен Дэвиду Мермину. Вариант, приведенный в тексте, заимствован из его статьи (Мермин [1985]).

Поделиться:
Популярные книги

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Дорогой Солнца

Котов Сергей
1. Дорогой Солнца
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
Дорогой Солнца

Шайтан Иван 2

Тен Эдуард
2. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван 2

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Царь Федор. Трилогия

Злотников Роман Валерьевич
Царь Федор
Фантастика:
альтернативная история
8.68
рейтинг книги
Царь Федор. Трилогия

Газлайтер. Том 6

Володин Григорий
6. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 6

Дочь опальной герцогини

Лин Айлин
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дочь опальной герцогини

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса