Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
| ) = 1 / 2 {|живая) + |дохлая)}
не имела бы смысла. Создается впечатление, что вектор состояния в конечном счете существует «только в воображении» наблюдателя!
Но можем ли мы принять такую субъективную точку зрения на вектор состояния? Предположим, что внешний наблюдатель не просто «заглядывает» в контейнер, а производит некую более изощренную процедуру. Предположим также, что, исходя из того, что он знает о начальном состоянии внутри контейнера, внешний наблюдатель сначала использует некоторый быстродействующий компьютер, чтобы на основании уравнения Шредингера вычислить, какое состояние действительно должно установиться внутри контейнера, и получить («правильный») ответ | ) (где | ) действительно включает в себя линейную суперпозицию дохлой кошки и живой кошки). Предположим далее, что внешний наблюдатель выполняет над содержимым контейнера тот самыйэксперимент, который позволяет отличить состояние | ) от любого ортогонального ему состояния. (Как было показано выше, по правилам квантовой механики внешний наблюдатель в принципеможет выполнить такой эксперимент, хотя осуществить его на практике было бы чрезвычайно трудно.) Вероятности двух исходов: «да, находится в состоянии | )» и «нет, находится в состоянии, ортогональном | )» — составляли бы, соответственно, 100 % и 0 %.
То же самое можно было бы утверждать и в том случае, если бы мы подобрали соответствующим образом длины путей фотона (или плотность посеребренного слоя на поверхности зеркала), так чтобы вместо линейной суперпозиции состояний |дохлая) + |живая) мы имели бы некоторую другую комбинацию, например, |дохлая) — i |живая) и т. д. Все эти различные комбинации приводят к различным экспериментальным следствиям (в принципе!). Таким образом уже говорится не «просто» о некоторой форме сосуществования межцу жизнью и смертью, от которой зависит судьба нашей несчастной кошки. Допустимы все возможные комплексныекомбинации, и все они (в принципе) отличимы одна от другой! Однако наблюдателю, находящемуся внутри контейнера, все эти комбинации представляются несущественными. Кошка либожива, либомертва. Каким образом мы можем придать смысл такого рода несоответствию? Я кратко приведу несколько различных точек зрения, высказанных по этому (и аналогичным) вопросу, хотя не подлежит сомнению, что я не смогу всем им дать равнозначную оценку.
Различные точки зрения на существующую квантовую теорию
Прежде всего практическая реализация эксперимента, аналогичного тому, который позволяет отличить состояние | ) от любого состояния, ортогонального | ), наталкивается на очевидные трудности. Не подлежит сомнению, что такой эксперимент на практике невозможен для внешнего наблюдателя. В частности, для этого внешнему наблюдателю понадобилось бы точно знать вектор состояния всего содержимого контейнера (включая наблюдателя, находящегося внутри контейнера), прежде чем он мог бы приступить к вычислению | ) в более поздние моменты времени! Однако мы требуем, чтобы такой эксперимент был невозможен не только на практике, но и в принципе , так как в противном случае у нас не было бы права изъять из физической реальности одно из состояний |живая) или |дохлая). Трудность заключается в том, что квантовая теория в том виде, в каком она существует сейчас, не дает никаких указаний относительно того, как должна быть проведена четкая линия между «возможными» и «невозможными» измерениями. Вполне вероятно, что такое четкое разграничение между теми и другими измерениями должно было бысуществовать. Но современная квантовая теория не позволяет провести такое разграничение. Чтобы провести разграничительную линию между «возможными» и «невозможными» измерениями, потребовалось бы изменитьквантовую теорию.
Во-первых, нередко высказывают точку зрения, согласно которой все трудности исчезли бы, если бы мы адекватно учли «окружающую среду» интересующей нас системы. Действительно, полностьюизолировать содержимое контейнера от внешнего мира практически невозможно. Как только окружающая среда начинает влиять на состояние содержимого контейнера, внешний наблюдатель не может считать, что состояние содержимого контейнера задается просто одним вектором состояния. Даже собственноесостояние внешнего наблюдателя оказывается сложным образом коррелированным с состоянием содержимого контейнера. Кроме того, с внутренностью контейнера неразрывно связано огромное число различных частиц, эффекты различных возможных линейных комбинаций распространяются все дальше и дальше во вселенную, охватывая огромное число степеней свободы. Не существует практическогоспособа (например, по наблюдению соответствующих эффектов интерференции), который позволил бы отличить эти комплексные линейные суперпозиции от вероятностно-взвешенных альтернатив. Это не должно быть связано просто с вопросом об изоляции содержимого контейнера от внешней среды. Сама кошка состоит из огромного числа частиц. Таким образом, комплексную линейную комбинацию дохлой кошки и живой кошки можно трактовать как если быона была просто смесью вероятностей. Но лично я отнюдь не считаю такую трактовку удовлетворительной. Как и в предыдущем рассуждении, мы можем спросить, на какой стадии получение интерференционных эффектов официально объявляется «невозможным», в результате чего квадраты модулей амплитуд в комплексной суперпозиции могут быть объявлены вероятностными весами «дохлой» и «живой» кошки. Даже если «реальность» мира «в действительности» становится (в некотором смысле) действительнозначнымвероятностным весом, каким образом это превращается в единственную альтернативу, ту или иную? Я не усматриваю, каким образом реальностьможет трансформироваться из комплексной (или действительной) линейной суперпозициидвух альтернатив в одну или другуюиз этих альтернатив на основе одной лишь эволюции U. Мне кажется, что подобный взгляд возвращает нас к субъективной точке зрения на мир.
Иногда высказывают мнение, что сложные системы должны в действительности описываться не «состояниями», а их обобщением, получившим название матриц плотности(фон Нейман [1955]). Последние включают в себя и классические вероятности и квантовые амплитуды. В этом случае для описания реальности берутся много квантовых состояний. Матрицы плотности полезны, но сами по себе они не решают глубоко проблематичные вопросы квантового измерения.
Можно попытаться придерживаться той точки зрения, что реальная эволюция — это детерминистский U– процесс, а вероятности возникают из-за неопределенностей в нашем знании того, что в действительностипредставляет собой квантовое состояние сложной системы. Такая точка зрения очень близка к «классическому» взгляду на происхождение вероятностей, согласно которому вероятности возникают из неопределенностей в начальном состоянии. Можно представить, что крохотные различия в начальном состоянии могут привести к огромным различиям в эволюции, таким, как «хаос», который встречается у классических систем (см., например, о предсказании погоды в главе 5, «Вычислима ли жизнь в бильярдном мире?»). Однако такие «хаотические» эффекты просто не могут возникнуть в рамках действия одной лишь U– процедуры, так как U линейна: нежелаемые линейные суперпозиции остаются таковыми навсегда при действии U! Чтобы выделить из нежелаемой суперпозиции ту или иную альтернативу, требуется нечто нелинейное, поэтому самой U– процедурыдля этого недостаточно.
Можно придти к другой точке зрения, если заметить, что единственное очевидное несоответствие с наблюдением в эксперименте с кошкой Шредилгера возникает, по-видимому, потому, что имеются сознательные наблюдателиодин (или два!) внутри и один снаружи контейнера. Возможно, законы комплексной квантовой линейной суперпозиции неприменимык сознанию! Грубая математическая модель, отражающая эту точку зрения, была предложена Эугеном П. Вигнером [1961].
Существует другая точка зрения, связанная в чем-то с предыдущей, которая сводит роль сознания к другому (противоположному) пределу. Она была выдвинута Джоном Уилером [1938] и получила название соучаствующей (партисипаторной) вселенной. Отметим, например, что эволюция сознательной жизни на нашей планете обусловлена подходящими мутациями, происходившими в различное время. Предположительно это были квантовые события, поэтому они могли бы существовать только в виде линейной суперпозиции до тех пор, пока они не довели эволюцию до мыслящих существ, самое существование которых зависит от всех «правильных» мутаций, имевших место в действительности! Именно наше присутствие, согласно этой идее, вызывает к существованию наше прошлое. Парадоксальность, присущая этой картине, может вызвать определенный интерес, но я лично вижу в ней много проблем и не считаю правдоподобной.
Другая точка зрения, также по-своему логичная, но приводящая к не менее странной картине — так называемая теория множественности миров, впервые выдвинутая Хью Эвереттом III [1957]. Согласно этой теории R– процедуравообще не имеет места. Вся эволюция вектора состояния (который считается реалистическим) все время управляется детерминистской U– процедурой. Отсюда следует, что несчастная кошка Шредингера вместе с облаченным в защитный костюм наблюдателем внутри контейнера действительно должны существовать в некоторой комплексной линейной комбинации, причем кошка должна представлять собой некоторую суперпозицию живой и дохлой. Однако дохлое состояние коррелировано с одним состоянием сознания наблюдателя, находящегося внутри контейнера, а живое состояние — коррелировано с другим состоянием его сознания (и, частично, с сознанием кошки, а в конечном счете и с состоянием сознания внешнего наблюдателя, после того, как содержимое контейнера открывается его наблюдению). Состояние каждого наблюдателя, с точки зрения Эверетта, надлежит считать «расщепляющимся», так как наблюдатель теперь как бы существует в двух экземплярах, причем каждый из экземпляров обладает различным жизненным опытом (один видит кошку живой, другой — дохлой). В действительности не только наблюдатель, но и весь мир, в котором он обитает, расщепляется на два мира (или на большее число миров) при каждом измерении, производимом им над окружающим миром. Такое расщепление повторяется снова и снова — не только из-за измерений, производимых наблюдателями, но и из-за усиления до макроскопических масштабов квантовых событий, вследствие чего «ветви» этого мира чудовищно множатся. Действительно, каждая альтернативная возможность сосуществовала бы в некоторой огромной суперпозиции. Вряд ли теория множественности миров — самая экономичная точка зрения, но мои собственные возражения связаны отнюдь не с отсутствием экономичности. В частности, я не понимаю, почему сознание непременно должно быть осведомлено только об «одной» из альтернатив в некоторой линейной суперпозиции. Что такое в сознании настоятельно требует, чтобы мы не могли быть «осведомлены» о дразнящей линейной комбинации дохлой и живой кошек? Мне кажется, что необходимо разработать теорию сознания, прежде чем теорию множественности миров удастся обтесать, чтобы она согласовывалась с реальными наблюдениями. Я не вижу, какая взаимосвязь существует между «истинным» (объективным) вектором состояния вселенной и тем, что, как предполагается, мы «наблюдаем». Высказывались мнения, будто в такой картине можно эффективно вывести «иллюзию» R– процедуры, но я не думаю, что подобные утверждения соответствуют истине. В конце концов, для того, чтобы описанная выше схема заработала, необходимы еще некоторые дополнительные компоненты. Мне кажется, что теория множественности миров привносит сама по себе множество новых трудностей, не затрагивая по-настоящему реальные загадки квантового измерения (см. Де Витг, Грэхем [1973]).
К чему мы пришли после всего сказанного?
Затронутые выше вопросы в том или ином обличье присутствуют в любойинтерпретации квантовой механики — в том виде, в каком эта теория существует в настоящее время. Приведем краткий обзор того, что стандартная квантовая теория в действительности говорит нам о том, каким образом мы должны описывать мир, особенно в отношении этих удивительных вопросов, и затем спросим: куда мы намерены двигаться дальше?
Прежде всего напомним, что описания, даваемые квантовой теорией, по-видимому, разумно (полезно?) применимы только на так называемом квантовом уровне— молекул, атомов или субатомных частиц, а также на больших масштабах при условии, что разности энергии между альтернативными возможностями остаются очень малыми. На квантовом уровне мы должны рассматривать такие «альтернативы» как нечто способное сосуществоватьв виде суперпозиции с комплексными коэффициентами. Используемые в качестве весов комплексные числа называются амплитудами вероятности . Каждая из совокупности различных альтернатив с комплексными коэффициентами определяет свое, отличное от других, квантовое состояние, и любая квантовая система должны допускать описание таким квантовым состоянием. Нередко (наиболее ярко это проявилось в примере со спином) бывает и так, что нам нечего сказать относительно того, каковы должны быть «реальные» альтернативы, образующие квантовое состояние, и каковы должны быть всего лишь «комбинации» альтернатив. В любом случае пока система остаетсяна квантовом уровне, квантовое состояние эволюционирует полностью детерминистскимобразом. Эта детерминистская эволюция и есть U– процесс, управляемый важным уравнением Шредингера .
Когда эффекты различных квантовых альтернатив оказываются увеличенными до классического уровня, так что различия между альтернативами становятся столь большими, что мы можем воспринимать их непосредственно, тогда такие суперпозиции с комплексными коэффициентами, по-видимому, перестают существовать. Вместо этого надо образовывать квадраты модулей комплексных амплитуд (т. е. брать квадраты их расстояний до начала координат на комплексной плоскости), и эти действительныечисла теперь играют роль настоящих вероятностейдля рассматриваемых альтернатив. В реальности физического эксперимента в соответствии с R– процедурой(называемой редукцией вектора состояния, или коллапсом волновой функции; полностью отличной от U) выживает только одна из альтернатив. Именно здесь и только здесь в игру вступает индетерминизм квантовой теории.