Организация как система. Принципы построения устойчивого бизнеса Эдвардса Деминга
Шрифт:
где: х – измеряемое значение показателя качества; х0 – его номинальное значение; L(x) – значение функции потерь Тагути в точке х; с – коэффициент масштаба (подбираемый в соответствии с используемой денежной единицей при измерении потерь). Это наиболее естественная и простая математическая функция, пригодная для представления основных особенностей функции потерь Тагути, рассмотренных в главе 11 [53] . Конечно, это не означает, что такой ее вид – наилучший выбор в каждом конкретном случае ее применения. Отметим, например, тот факт, что вышеприведенная формула предполагает одинаковый уровень потерь при отклонениях от номинала в обе стороны (в конце предшествующей главы мы рассматривали
53
Некоторые статистики смогут обнаружить очевидную аналогию такого выбора для функции потерь Тагути с методом наименьших квадратов. – Прим. авт.
Но даже если наша параболическая модель и не вполне корректна, она, без сомнения, значительно ближе к действительности, чем функция потерь, соответствующая подходу к качеству на основе установления границ допусков, представленная на рисунке 36. Последняя модель предполагает, что потери отсутствуют при всех отклонениях от номинала в пределах допусков, но они скачкообразно возникают на границах поля допуска. С учетом проведенного в предшествующей главе обсуждения здесь не нет нужды в детальном рассмотрении данного вопроса, за исключением одного аспекта. Припомните сделанное нами в главе 11 наблюдение об осознании важности допусков. В любой системе, механической или бюрократической, которая спохватывается, только когда что-либо выходит за границы допусков, скоропалительные действия оказываются весьма дорогостоящими. Значит, в подобных случаях действительно имеется резкое увеличение потерь после выхода показателя качества за границы допусков, но эти потери обусловлены самой системой управления, а не возникают в результате отклонений уровня качества самой продукции или услуги.
Ниже мы воспользуемся параболической моделью для более детального изучения понятий и примеров, рассмотренных в главе 11. Поскольку это всего лишь модель, конкретные числа, получаемые в ходе расчетов, не так уж важны. Поэтому незначительные отличия в числах не будут рассматриваться как что-то значимое. Стратегия, дающая несколько большие потери, чем другая стратегия в предположении применимости этой модели, при замене этой модели на другую может оказаться более предпочтительной для функции потерь. Но когда мы обнаруживаем различия на целые порядки (например, когда потери от одной стратегии в 10, 50 или даже 100 раз превышают потери от другой), мы можем с полной уверенностью сказать, что различия в стратегиях весьма значительны, даже с учетом того, что параболическая модель – всего лишь идеализация.
В качестве дальнейшей идеализации, которая нужна для проведения численных сравнений в данной главе, мы вынуждены предположить, что рассматриваемые здесь процессы будут абсолютно стабильными. Приведенный в главе 4 термин «абсолютно стабильный» предполагает, что статистическое распределение процесса неизменно, не колеблется. В частности, это означает, что мы можем говорить в терминах истинных значений для среднего и стандартного отклонения, которые мы обозначим (но только в данной главе) символами и соответственно. (Хотя это противоречит важному замечанию Деминга касательно реальных процессов; см.: «Выход из кризиса», стр. 293.)
Далее мы будем использовать понятие средних потерь Тагути. Средние потери Тагути, применительно к выборке или партии из n изделий, для которых значения х1, х2…, хn рассматриваемого показателя качества х равны:
Если процесс абсолютно стабилен и имеет плотность распределения вероятности, тогда средние потери Тагути можно вычислить из:
что соответствует площади под кривой, задаваемой произведением функции потерь L(x) на плотность вероятности f(x). Некоторые очевидные математические преобразования позволяют привести это выражение
где члены внутри фигурных скобок ({…}) представляют соответственно квадратичное (стандартное) отклонение (обычно связанное с дисперсией) и квадрат смещения. Следует заметить, что средние потери Тагути не зависят каким-то сложным образом от f(x); их можно весьма просто вычислить, если известны простые параметры, входящие в последнее выражение [54] .
54
Важное следствие этого – отсутствие каких-либо предположений относительно вида функции, например ее соответствия, близости нормальному (Гауссовому) распределению. Мы, однако, использовали нормальное распределение для иллюстрации на рисунках 37–40, а также в некоторых тонких деталях, вычислений в двух последних примерах данной главы. – Прим. авт.
Чтобы облегчить сравнения, давайте также введем обозначение для воспроизводимости процесса. В разных компаниях она определяется различным образом, но мы будем полагать ее равной разности между верхней и нижней границами допуска деленной на разность между верхней и нижней естественными пределами процесса, где для естественных пределов процесса мы используем «истинные» границы 3 для индивидуальных наблюдений, так что знаменатель можно представить просто как 6 [55] .
55
Это не определение Демингом воспроизводимости. Не удивительно, что он определяет воспроизводимость (стабильного) процесса просто как определение естественных пределов процесса, без ссылки на допуски. – Прим. авт.
Воспроизводимость, равная 1 (единичная воспроизводимость), соответствует процессу, который в большинстве случаев едва укладывается в границы допусков [56] . Процесс иногда называют воспроизводимым или невоспроизводимым в зависимости от того, превосходит ли показатель воспроизводимости единицу или нет. Обычный образ мыслей на Западе – признание значения 1 1/3 как соответствующего исключительно эффективному процессу, а значения 1 2/3 – уже, возможно, слишком экстравагантным, поскольку вероятность получения в этом случае измерения за пределами допусков оказывается пренебрежимо малой [57] . Однако заметим, что данные о процессах из японской практики, упоминаемые в главе 11, позволяют оценить их уровень воспроизводимости от 3 до 5. И чтобы мера воспроизводимости отражала то, что процесс может давать на самом деле (а не то, на что он потенциально способен), надо предположить, что процесс точно настроен (центрирован), т. е. среднее процесса совпадает с номинальным значением х0. Ниже мы рассмотрим, что происходит, если это предположение не выполняется.
56
Например, если процесс точно центрирован, а распределение нормальное, то в среднем одно измерение из почти 400 будет выходить за границы допуска, и при этом – на весьма незначительную величину. – Прим. авт.
57
Модные ныне «шесть сигм» соответствуют воспроизводимости, равной 2. – Прим. авт.
Мы должны выбрать значение масштабного коэффициента с в уравнении для параболы таким образом, чтобы процесс, имеющий воспроизводимость 1 и точно центрированный, имел бы средние потери Тагути, равные 100 единицам. Вначале рассмотрим значения средних потерь Тагути для абсолютно стабильного процесса, точно настроенного на номинальное значение ху, но в предположении различной воспроизводимости процесса.
Мы видим, что повышение воспроизводимости от 1 1/3 до 1 2/3 уменьшает средние потери Тагути от половины до трети их значения по сравнению с потерями, соответствующими единичной воспроизводимости. Однако повышение воспроизводимости до 3–5 дает огромный эффект, описываемый в терминах порядков величин, как мы говорили об этом ранее. Графики средних потерь Тагути, в зависимости от воспроизводимости процессов, для всех примеров, рассматриваемых в данной главе, показаны на рисунке 41.