Чтение онлайн

на главную - закладки

Жанры

Основы объектно-ориентированного программирования

Мейер Бертран

Шрифт:

[x]. Если же эталонный документ является формальным, и мы можем, используя его, проверить полноту нашей спецификации, то это просто отодвигает проблему дальше: как можно убедиться в полноте самого эталонного документа?

Таким образом, в этой тривиальной форме вопрос о полноте неинтересен. Но имеется и более полезное понятие полноты, соответствующее значению этого слова в математической логике. Для математика некоторая теория является полной, если ее аксиомы и правила вывода являются достаточно мощными, чтобы доказать истинность или ложность любой формулы, выразимой в языке

данной теории. Хотя такое понятие полноты является более ограниченным, но оно интеллектуально вполне удовлетворительно, поскольку показывает, что если теория позволяет нам выражать некоторое свойство, то она также дает возможность определить имеет ли это свойство место.

Как можно перенести эту идею на спецификации АТД? Здесь "язык теории" - это множество правильно построенных выражений, т.е. тех выражений, которые можно построить, используя функции АТД, применяемые к аргументам соответствующих типов. Например, используя спецификацию АТД STACK и считая, что x является правильно построенным выражением типа G, можно указать следующие правильно построенные выражения:

new

put (new, x)

item (new) - если это кажется странным, то см. комментарии ниже.

empty (put (new, x))

stackexp - ранее определенное сложное выражение.

Однако выражения put (x) и put (x, new) не являются правильно построенными, так как они не соответствуют правилу: put всегда должно иметь два аргумента - первый типа STACK [G] и второй типа G.

Третий пример в рамке item (new) не задает никакого осмысленного вычисления, поскольку аргумент new не удовлетворяет предусловию для item. Хотя это выражение и правильно построено, оно не является корректным. Вот точное определение этого понятия.

Определение: корректное выражение АТД

Пусть f(x1 , ... , xn) - правильно построенное выражение, содержащее одну или более функций некоторого АТД. Это выражение является корректным тогда и только тогда, когда все его аргументы xi являются (по рекурсии) корректными и их значения удовлетворяют предусловию f, если оно имеется.

Не следует путать "корректное" и "правильно построенное". "Правильно построенное" - это структурное свойство, указывающее на то, что функции, входящие в выражение, имеют правильное число аргументов соответствующих типов, а корректность, которой могут обладать лишь правильно построенные выражения, означает, что данное выражение задает осмысленное вычисление. Как мы видели, выражение put (x) не является правильно построенным (и поэтому бессмысленно спрашивать, корректно ли оно), а выражение item (new) правильно построено, но некорректно.

Правильно построенное, но некорректное выражение похоже на программу,

которая компилируется (поскольку построена в соответствии с требованиями синтаксиса языка программирования и удовлетворяет ограничениям, накладываемым в нем на типы), но аварийно завершается во время выполнения из-за выполнения некоторой недопустимой операции, например, деления на 0 или выталкивания элемента из пустого стека.

Особый интерес с точки зрения полноты представляют выражения-запросы, у которых самая внешняя функция является запросом. Вот примеры таких выражений:

empty (put (put (new, x1), x2))

item (put (put (new, x1), x2))

stackexp

Выражение-запрос задает значение, которое (если оно определено) принадлежит не определяемому АТД, а некоторому другому ранее определенному типу. Так, первое приведенное выше выражение имеет значение типа BOOLEAN, а второе и третье - тип G формального параметра для элементов стека, например если мы рассматриваем АТД STACK [INTEGER], то это будет тип INTEGER.

Выражения-запросы представляют внешние наблюдения, которые можно сделать о результатах некоторого вычисления, использующего экземпляры нового АТД. Если спецификация этого АТД хорошая, то она должна позволить нам установить определены ли эти результаты, и если да, то каковы они. Представляется, что спецификация стека обладает этим свойством, по крайней мере, для трех представленных в примере выражений, поскольку она позволяет установить, что все эти выражения определены, и с помощью аксиом можно получить их значения:

empty (put (put (new, x1), x2)) = False

item (put (put (new, x1), x2)) = x2

stackexp = x4

Эти наблюдения, перенесенные на произвольные спецификации АТД, приводят к прагматическому понятию полноты, известному как достаточная полнота, она означает, что спецификация содержит достаточно сильные аксиомы, которые позволяют находить для любого выражения-запроса его результат в виде некоторого простого значения.

Приведем точное определение достаточной полноты. (Не расположенные к математике читатели могут пропустить остаток этого раздела).

Определение: достаточная полнота

Спецификация АТД T является достаточно полной тогда и только тогда, когда аксиомы ее теории позволяют для каждого выражения expr решить следующие задачи:

[x]. (S1) Определить, является ли expr корректным.

[x]. (S2) Если expr– выражение-запрос и в пункте S1 установлена его корректность, то представить значение expr в виде, не включающем никаких значений типа T.

Поделиться:
Популярные книги

Эммануэль

Арсан Эммануэль
1. Эммануэль
Любовные романы:
эро литература
7.38
рейтинг книги
Эммануэль

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Жених из гроба

Сотис Майя
1. Гробокопательница
Фантастика:
юмористическое фэнтези
сказочная фантастика
фэнтези
5.00
рейтинг книги
Жених из гроба

Противостояние

Демидов Джон
3. Система компиляции
Фантастика:
героическая фантастика
рпг
5.00
рейтинг книги
Противостояние

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Аналитик

Семин Никита
4. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Аналитик

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Доктор 2

Афанасьев Семён
2. Доктор
Фантастика:
альтернативная история
5.00
рейтинг книги
Доктор 2

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI