Чтение онлайн

на главную - закладки

Жанры

Основы объектно-ориентированного программирования

Мейер Бертран

Шрифт:

В S2 выражение expr имеет вид f(x1 , ..., xn), где f– функция вида запрос такая, как empty и item для стеков. S1 говорит о том, что у expr есть значение, но этого недостаточно, нам хотелось бы знать, каково это значение, представленное в терминах значений других типов (в примере со стеком это значения типов BOOLEAN и G). Если аксиомы настолько сильны, что всегда позволяют ответить на этот вопрос, то спецификация является достаточно полной.

Достаточная

полнота свидетельствует о том, что никакое важное свойство не осталось вне нашей спецификации. Поэтому ее можно считать ответом на поставленный выше вопрос: как понять, что можно прекратить поиски новых свойств при построении спецификации? На практике хорошо бы проводить такую проверку, по крайней мере неформально, для любой спецификации АТД, которую вы пишете - начните с решений упражнений, приведенных в этой лекции. Часто, можно получить формальное доказательство достаточной полноты; приведенное ниже доказательство для спецификации STACK является образцом, которому во многих случаях можно следовать.

Пункт S2 оптимистически говорит об одном значении expr, а что, если аксиомы приводят к двум или более значениям? Это сделало бы спецификацию бесполезной. Чтобы устранить такую ситуацию нам нужно еще одно свойство, называемое в математической логике непротиворечивостью:

Определение: непротиворечивость АТД

Спецификация АТД является непротиворечивой тогда и только тогда, когда для всякого правильно построенного выражения expr ее аксиомы позволяют вывести не более одного значения.

Эти два свойства являются взаимно дополнительными. Нам хотелось бы для каждого выражения-запроса выводить ровно одно значение: хотя бы одно (достаточная полнота), но не более одного (непротиворечивость).

Доказательство достаточной полноты

(Этот раздел и остаток этой лекции содержат дополнительный материал и их результаты не нужны для остальной части книги).

Достаточная полнота спецификаций АТД является, в общем случае, алгоритмически неразрешимой проблемой. Иными словами, не существует общего метода доказательства, который мог бы по заданной спецификации АТД выяснить за конечное время ее достаточную полноту. Непротиворечивость также в общем случае неразрешима.

Несмотря на это, часто удается доказать достаточную полноту и непротиворечивость конкретной спецификации АТД. Чтобы удовлетворить любопытство читателей-любителей математики, в заключение этой лекции мы приведем доказательство того, что спецификация STACK на самом деле является достаточно полной. Доказательство ее непротиворечивости будет оставлено в качестве упражнения.

Для доказательства достаточной полноты спецификации стека нужно придумать эффективное правило для решения указанных выше задач S1 и S2, другими словами, такое правило, которое позволит нам для любого стекового выражения e:

[x]. (S1) Определить, является ли e корректным.

[x]. (S2) Если в пункте S1 установлена корректность e и его внешними функциями являются item или empty (т.е. функции-запросы), то представить значение e с помощью значений типов BOOLEAN и G без ссылок на значения типа STACK [G]

или на функции из спецификации STACK.

Для начала мы рассмотрим только правильно построенные выражения, не включающие ни одну из двух функций-запросов item и empty, т. е. выражения, построенные только из функций new, put и remove. Таким образом, на этом этапе нас будет интересовать лишь задача S1 (установить определено ли выражение). Функции-запросы и S2 будут рассмотрены далее.

Правило для решения задачи S1 задается следующим свойством:

Правило корректного веса

Правильно построенное стековое выражение e, не содержащее ни item, ни empty, является корректным тогда и только тогда, когда его вес неотрицателен и каждое его подвыражение является (по индукции) корректным.

Здесь "вес" выражения представляет число элементов в соответствующем стеке, это значение также совпадает с разностью между числом вложенных вхождений функций put и remove. Приведем точное определение этого понятия:

Определение: вес

Вес правильно построенного стекового выражения, не содержащего ни item, ни empty, определяется по индукции следующим образом:

[x]. (W1) Вес выражения new равен 0.

[x]. (W2) Вес выражения put (s, x) равен ws + 1, где ws– это вес s.

[x]. (W3) Вес выражения remove (s) равен ws– 1, где ws– это вес s.

Содержательно, правило корректного веса утверждает, что стековое выражение корректно тогда и только тогда, когда в нем самом и в каждом из его подвыражений имеется не меньше операций put (вставляющих элементы в стек), чем операций remove (выталкивающих элементы с вершины стека). Если рассмотреть такое выражение как представление некоторого вычисления над стеком, то это означает, что мы никогда не будем пытаться вытолкнуть больше элементов, чем втолкнули. Напомним, что на этом этапе мы сосредоточились на функциях put и remove, оставив в стороне запросы item и empty.

Интуитивно сформулированное правило выглядит верным, но нам следует все же доказать, что оно имеет место. Удобно ввести еще одно вспомогательное правило и одновременно доказывать справедливость обоих этих правил:

Правило нулевого веса

Пусть e - это правильно построенное и корректное стековое выражение, не содержащее item или empty. Тогда empty (e) истинно тогда и только тогда, когда вес e равен 0.

Доказательство использует индукцию по уровню вложенности (максимальному числу вложенных пар скобок) выражения. Для удобства ссылок напомним аксиомы, относящиеся к функции empty:

Поделиться:
Популярные книги

Эммануэль

Арсан Эммануэль
1. Эммануэль
Любовные романы:
эро литература
7.38
рейтинг книги
Эммануэль

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Жених из гроба

Сотис Майя
1. Гробокопательница
Фантастика:
юмористическое фэнтези
сказочная фантастика
фэнтези
5.00
рейтинг книги
Жених из гроба

Противостояние

Демидов Джон
3. Система компиляции
Фантастика:
героическая фантастика
рпг
5.00
рейтинг книги
Противостояние

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Аналитик

Семин Никита
4. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Аналитик

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Доктор 2

Афанасьев Семён
2. Доктор
Фантастика:
альтернативная история
5.00
рейтинг книги
Доктор 2

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI