Чтение онлайн

на главную - закладки

Жанры

Основы объектно-ориентированного программирования

Мейер Бертран

Шрифт:

Аксиомы стека

Для всех x: G, s: STACK [G]

[x]. (A3) empty (new)

[x]. (A4) not empty (put (s, x))

При уровне вложенности 0 (без скобок) выражение e должно совпадать с new, поэтому его вес равен 0 и оно корректно, так как у new нет никаких предусловий. Аксиома A3 утверждает, что empty (new) истинно. Это обеспечивает базис индукции как для правила корректного веса, так и для правила нулевого веса.

Индукционный шаг: предположим, что оба правила выполняются для всех выражений с уровнем вложенности не более n. Нужно доказать, что тогда они выполняются и для любого выражения e с уровнем вложенности n+1.

Поскольку наши выражения сейчас не содержат функций-запросов, то e должно иметь один из следующих двух видов:

E1 · e = put (s, x)

E2 · e = remove (s)

где x имеет тип G, а уровень вложенности у s равен n. Пусть ws– это вес s.

В случае E1, поскольку put– всюду определенная функция, e корректно тогда и только тогда, когда s корректно, т. е. (по предположению индукции) тогда и только тогда, когда s и все его подвыражения имеют неотрицательные веса. Но это эквивалентно тому, что e и все его подвыражения имеют неотрицательные веса, что и доказывает правило корректного веса в этом случае. Кроме того, e имеет положительный вес ws+1, и (по аксиоме A4) является непустым, что доказывает правило нулевого веса.

В случае E2 выражение e корректно тогда и только тогда, когда выполняются два следующих условия:

EB1 _ s и все его подвыражения являются корректными.

EB2 _ not empty (s) (это предусловие для функции remove).

По предположению индукции условие EB2 означает, что вес s ws положителен или, что эквивалентно, вес e, равный ws - 1, является неотрицательным. Следовательно, e удовлетворяет Правилу корректного веса. Чтобы доказать, что оно также удовлетворяет правилу нулевого веса, нужно показать, что e пусто тогда и только тогда, когда его вес равен 0. Так как вес s положителен, то s должно содержать по крайней мере одно вхождение put, которое также входит и в e. Рассмотрим самое внешнее вхождение put в e, это вхождение находится непосредственно внутри remove (так как remove находится на самом внешнем уровне у e). Это означает, что у e имеется подвыражение (быть может, совпадающее с самим e) вида

remove (put (stack_expression, g_expression)),

которое по аксиоме A2 можно сократить просто до stack_expression. После выполнения этой замены вес e уменьшится на 2, и получившееся выражение, имеющее то же значение, что и e, удовлетворяет по предположению индукции правилу нулевого веса. Это доказывает утверждение индукции в случае E2.

Это доказательство попутно показывает, что во всяком правильно построенном выражении, не содержащем функций-запросов item и empty, можно устранить все вхождения remove, т.е. получить, применяя всюду, где это возможно, аксиому A2, некоторую

каноническую форму, в которую будут входить только put и new. Например, выражение:

put (remove (remove (put (put (remove (put (put (new, x1), x2)), x3), x4))), x5)

имеет то же значение, что и каноническая форма:

put (put (new, x1), x5).

Давайте дадим этому механизму имя и приведем его определение:

Правило канонического сокращения

Всякое правильно построенное и корректное стековое выражение, не содержащее функций-запросов item и empty, имеет эквивалентную каноническую форму, которая не содержит функции remove (т.е. состоит только из функций put и new>). Эта каноническая форма получается путем применения аксиомы стека A2 всегда, пока это возможно.

Таким образом, мы завершили доказательство достаточной полноты, но только для выражений, не содержащих функции-запросы, и, следовательно, только свойства S1 (проверка корректности выражения). Для завершения доказательства нужно рассмотреть выражения, включающие функции-запросы, и обсудить задачу S2 (нахождение значений для выражений-запросов). Это означает, что нам нужно некоторое правило для определения корректности и значения всякого правильно построенного выражения вида f(s), где s– это правильно построенное выражение, а f– это либо item, либо empty.

Это правило и доказательство его корректности также используют индукцию по уровню вложенности. Пусть n– это уровень вложенности s. Если n=0, то s может быть только new, поскольку остальные функции требуют аргументов и, следовательно, содержат хоть одну пару скобок. Тогда для обеих функций-запросов ситуация ясна:

[x]. empty (new) корректно и имеет значение истина (true) (по аксиоме A3);

[x]. item (new) некорректно, так как предусловие item требует выполнения not empty (s) .

Индукционный шаг: предположим, что s имеет уровень вложенности n не менее 1. Если у какого-либо подвыражения u выражения s внешняя функция есть item или empty, то уровень вложенности u не превосходит n-1, что по предположению индукции позволяет определить корректность u и, если u корректно, получить его значение, применяя аксиомы. Выполнив замены всех таких подвыражений, получим для s эквивалентную форму, в которую входят только функции put, remove и new.

Далее используем идею введенной выше канонической формы, чтобы избавиться от всех вхождений remove, так что результирующая форма для s будет включать только функции put и new. Случай, когда s это просто new уже был рассмотрен, остался случай, когда s имеет вид put(s', x) . В этом случае для двух рассматриваемых выражений имеем:

[x]. empty (s) корректно и по аксиоме A3 значение этого выражения есть ложь (false);

Поделиться:
Популярные книги

Метатель. Книга 7

Тарасов Ник
7. Метатель
Фантастика:
боевая фантастика
попаданцы
постапокалипсис
рпг
фэнтези
фантастика: прочее
5.00
рейтинг книги
Метатель. Книга 7

Вернуть Боярство 3

Мамаев Максим
3. Пепел
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Вернуть Боярство 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Неправильный лекарь. Том 1

Измайлов Сергей
1. Неправильный лекарь
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Неправильный лекарь. Том 1

Черный дембель. Часть 2

Федин Андрей Анатольевич
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Черный дембель. Часть 2

Развод с генералом драконов

Солт Елена
Фантастика:
фэнтези
5.00
рейтинг книги
Развод с генералом драконов

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Своя правда

Шебалин Дмитрий Васильевич
2. Чужие интересы
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Своя правда