Ответы на экзаменационные билеты по эконометрике
Шрифт:
Величина
называется несмещённой оценкой параметра
если её выборочное математическое ожидание равно оцениваемому параметру генеральной совокупности:
Отсюда следует, что
где i – это величина смещения оценки.
Рассмотрим свойство несмещённости МНК-оценок на примере модели парной регрессии.
Необходимо
полученная методом наименьших квадратов, является несмещённой оценкой параметра 1 для нормальной линейной модели регрессии, т. е. необходимо доказать справедливость равенства
Доказательство. Проведём доказательство утверждения
через ковариационную матрицу:
То же самое утверждение
можно доказать в более развёрнутом виде:
Следовательно, оценка
полученная методом наименьших квадратов, является несмещённой оценкой коэффициента 1 нормальной линейной модели парной регрессии.
Свойство несмещённости оценки
коэффициента 0нормальной линейной модели парной регрессии, полученной методом наименьших квадратов, доказывается аналогично.
Для модели множественной регрессии доказательство свойства несмещённости оценок параметров i, полученных методом наименьших квадратов, целесообразно провести в матричной форме:
Следовательно, оценки
полученные методом наименьших квадратов, являются несмещёнными оценками коэффициентов iнормальной линейной модели множественной регрессии.
Величина
является состоятельной оценкой параметра
если она удовлетворяет закону больших чисел. Суть закона больших чисел состоит в том, что с увеличением выборочной совокупности значение оценки
стремится к значению параметра
генеральной совокупности:
Условие состоятельности можно также записать через теорему Бернулли:
т. е. значение оценки
сходится по вероятности к значению параметра
генеральной совокупности, при условии, что объём выборочной совокупности стремится к бесконечности.
На практике оценка
полученная
если выполняются два условия:
1) смещение оценки равно нулю или стремится к нему при объёме выборки, стремящемся к бесконечности:
2) дисперсия оценки параметра
стремится к нулю при объёме выборки, стремящемся к бесконечности:
Рассмотрим свойство состоятельности МНК-оценок на примере модели парной регрессии.
Необходимо доказать, что оценка
полученная методом наименьших квадратов, является состоятельной оценкой параметра 1для нормальной линейной модели регрессии.
Доказательство. Докажем первое условие состоятельности для МНК-оценки
Докажем второе условие состоятельности для МНК-оценки
МНК-оценка
подчиняется нормальному закону распределения с математическим ожиданием 1 и дисперсией
или
где индекс 22 указывает на расположение дисперсии параметра 1в матрице ковариаций.
Свойство состоятельности оценки
коэффициента 0 нормальной линейной модели парной регрессии, полученной методом наименьших квадратов, доказывается аналогично.
Оценка стандартной ошибки МНК-оценки
определяется по формуле:
Для модели множественной регрессии доказательство свойства несмещённости оценок параметров i, полученных методом наименьших квадратов, целесообразно провести в матричной форме:
Следовательно, оценки
полученные методом наименьших квадратов, являются несмещёнными оценками коэффициентов iнормальной линейной модели множественной регрессии.
Эффективность МНК-оценок доказывается с помощью теоремы Гаусса-Маркова.
17. Эффективность МНК-оценок МНК
Свойство эффективности оценок неизвестных параметров модели регрессии, полученных методом наименьших квадратов, доказывается с помощью теоремы Гаусса-Маркова.
Сделаем следующие предположения о модели парной регрессии:
1) факторная переменная xi– неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии i;
Институт экстремальных проблем
Проза:
роман
рейтинг книги

Мастер Разума IV
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
рейтинг книги
Ведьмак. Перекресток воронов
Фантастика:
фэнтези
рейтинг книги
На границе империй. Том 9. Часть 5
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
рейтинг книги
Весь Карл Май в одном томе
Приключения:
прочие приключения
рейтинг книги
Студиозус 2
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
рейтинг книги
Кодекс Крови. Книга IХ
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Отцы-основатели. Весь Саймак - 10.Мир красного солнца
10. Отцы-основатели. Весь Саймак
Фантастика:
научная фантастика
рейтинг книги
Хранители миров
Фантастика:
юмористическая фантастика
рейтинг книги
