Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

Если одна из факторных переменных производственной функции Солоу равна нулю, например, K=0, то изменение объёма производства Q будет линейно зависеть от изменения объёма второй факторной переменной, т. е. затрат труда L. И, наоборот, если L=0, то изменение объёма производства Q будет линейно зависит от изменения затрат основного капитала К.

Если одну из факторных переменных, например, затраты основного капитала K зафиксировать на уровне K0, то объем произведённой продукции Q будет увеличиваться с ростом второй

факторной переменной затрат труда L. Если же зафиксировать факторную переменную затрат труда L на уровне L0, то объем произведённой продукции Q будет увеличиваться с ростом второй факторной переменной К.

Докажем данное утверждение. Рассчитаем показатель предельной производительности факторной переменной затрат труда L:

Следовательно, предельная производительность факторной переменной L всегда больше нуля.

Аналогично доказывается, что предельная производительность второй факторной переменной объёма основных фондов К также больше нуля, что говорит о росте объёма произведённой продукции Q с ростом факторной переменной К и при фиксированном значении факторной переменной L.

Изоквантой для двухфакторной производственной функции Солоу называется кривая, которая характеризуется равенством (K,L)=const.

Для производственной функции Солоу можно рассчитать показатели эластичности:

1) частный коэффициент эластичности функции Солоу по факторной переменной К рассчитывается по формуле:

2) частный коэффициент эластичности функции Солоу по факторной переменной L рассчитывается по формуле:

54. Многофакторные производственные функции

Многофакторной производственной функцией называется функция, которая характеризует зависимость объёма производства от n– го количества факторов производства.

y=f(xi),

где

Многофакторные производственные функции полезны тем, что на их основе можно рассчитать целый ряд важнейших экономических показателей.

К основным показателям многофакторных производственных функций относятся:

1) показатель средней производительности (эффективности, отдачи) i– го фактора при условии фиксированности всех остальных факторов:

2) показатель предельной производительности (эффективности, отдачи) i– го фактора, который характеризует приращение объёма производства на единицу приращения i– го фактора, рассчитывается как частная производная по факторной переменной xi:

3) для определения характера изменения предельной производительности с изменением объёма i

го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi:

Если показатель

больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной.

Если показатель

равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной.

4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:

5) потребность производства в i-том факторе выражается через функциональную зависимость вида:

xi=(y,x1…xi-1,xi+1…xn).

6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:

При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции.

55. Модели бинарного выбора

Результативная переменная у в нормальной линейной модели регрессии является непрерывной величиной, способной принимать любые значения из заданного множества. Но помимо нормальных линейных моделей регрессии существуют модели регрессии, в которых переменная у должна принимать определённый узкий круг заранее заданных значений.

Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений

В качестве примеров бинарных результативных переменных можно привести:

Приведенные в качестве примеров бинарные переменные являются дискретными величинами. Бинарная непрерывная величина задаётся следующим образом:

Если стоит задача построения модели регрессии, включающей результативную бинарную переменную, то прогнозные значения yiпрогноз, полученные с помощью данной модели, будут выходить за пределы интервала [0;+1] и не будут поддаваться интерпретации. В этом случае задача построения модели регрессии формулируется не как предсказание конкретных значений бинарной переменной, а как предсказание непрерывной переменной, значения которой заключаются в интервале [0;+1].

Поделиться:
Популярные книги

Сила рода. Том 1 и Том 2

Вяч Павел
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
5.85
рейтинг книги
Сила рода. Том 1 и Том 2

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

Чернышевский Николай Гаврилович
Чернышевский, Николай Гаврилович. Полное собрание сочинений в 15 томах
Проза:
русская классическая проза
5.00
рейтинг книги
Полное собрание сочинений в 15 томах. Том 1. Дневники - 1939

А небо по-прежнему голубое

Кэрри Блэк
Фантастика:
фэнтези
5.00
рейтинг книги
А небо по-прежнему голубое

Собрание сочинений В. К. Арсеньева в одной книге

Арсеньев Владимир Клавдиевич
5. Абсолют
Приключения:
исторические приключения
5.00
рейтинг книги
Собрание сочинений В. К. Арсеньева в одной книге

Чародеи. Пенталогия

Смирнов Андрей Владимирович
Фантастика:
фэнтези
7.95
рейтинг книги
Чародеи. Пенталогия

Попаданка. Финал

Ахминеева Нина
4. Двойная звезда
Фантастика:
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Попаданка. Финал

Блудное Солнце. Во Славу Солнца. Пришествие Мрака

Уильямс Шон
Эвердженс
Фантастика:
боевая фантастика
6.80
рейтинг книги
Блудное Солнце. Во Славу Солнца. Пришествие Мрака

Адвокат Империи 3

Карелин Сергей Витальевич
3. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 3

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново