Ответы на экзаменационные билеты по эконометрике
Шрифт:
Решением данной задачи будет являться кривая, удовлетворяющая следующим трём свойствам:
1) 1) F(–)=0;
2) F(+)=1;
3) F(x1)>F(x2) при условии, чтоx1> x2.
Данным трём свойствам удовлетворяет функция распределения вероятности.
Модель парной регрессии с результативной бинарной переменной с помощью функции распределения вероятности можно представить в следующем виде:
prob(yi=1)=F(0+1xi),
где prob(yi=1) – это вероятность того, что результативная переменная yi
В этом случае прогнозные значения yiпрогноз, полученные с помощью данной модели, будут лежать в пределах интервала [0;+1].
Модель бинарного выбора может быть представлена с помощью скрытой или латентной переменной следующим образом:
Векторная форма модели бинарного выбора с латентной переменной:
В данном случае результативная бинарная переменная yi принимает значения в зависимости от латентной переменной yi*:
Модель бинарного выбора называется пробит-моделью или пробит-регрессией (probit regression), если она удовлетворяет двум условиям:
1) остатки модели бинарного выбора i являются случайными нормально распределёнными величинами;
2) функция распределения вероятностей является нормальной вероятностной функцией.
Пробит-регрессия может быть представлена с помощью выражения:
NP(yi)=NP(0+1x1i+…+kxki),
где NP – это нормальная вероятность (normal probability).
Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки i подчиняются логистическому закону распределения.
Логит-регрессия может быть представлена с помощью выражения:
Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1].
Обобщённый вид модели логит-регрессии:
Достоинством данной модели является то, что результативная переменная yi может произвольно меняться внутри заданного числового интервала (не только от нуля до плюс единицы).
Логит-регрессия относится к классу функций, которые можно привести к линейному виду. Это осуществляется с помощью преобразования, носящего название логистического или логит преобразования, которое можно проиллюстрировать на примере преобразования обычной вероятности р:
Качество построенной логит-регрессии или пробит-регрессии характеризуется с помощью псевдо коэффициента детерминации, который рассчитывается по формуле:
Если значение данного коэффициента близко к единице, то модель регрессии считается адекватной реальным данным.
56.
Метод максимума правдоподобия (maximum likelihood function) применяется для определения неизвестных коэффициентов модели регрессии и является альтернативой методу наименьших квадратов. Суть данного метода состоит в максимизации функции правдоподобия или её логарифма.
Общий вид функции правдоподобия:
где
– это геометрическая сумма, означающая перемножение вероятностей по всем возможным случаям внутри скобок.
Предположим, что на основании полученных данных была построена модель регрессии бинарного выбора, где результативная переменная представлена с помощью латентной переменной:
Следовательно, вероятность события, что результативная переменная yi примет значение, равное единице, можно выразить следующим образом:
Вероятность события, что результативная переменная yi примет значение, равное нулю, можно выразить следующим образом:
В связи с тем, что для вероятностей считается справедливым равенство вида:
функция правдоподобия может быть записана как геометрическая сумма вероятностей наблюдений:
Для логит-регрессии и пробит-регрессии функция правдоподобия строится через сумму натуральных логарифмов правдоподобия следующим образом:
Оценки неизвестных параметров логит-регрессии и пробит-регрессии определяются с помощью максимизации функции правдоподобия:
Для определения максимума функции l(,X) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений:
С помощью преобразований данной системы уравнений переходим к системе нормальных уравнений, решениями которой и будут оценки максимального правдоподобия
Прежде, чем использовать пробит-регрессию и логит-регрессию для прогнозирования или анализа, необходимо проверить значимость вычисленных коэффициентов пробит и логит регрессий и моделей регрессии в целом. Подобная проверка осуществляется с помощью величины (l1-l0), где параметр l1 соответствует максимально правдоподобной оценке основной модели регрессии, а параметр l0 – оценка нулевой модели регрессии, т. е. yi=0.
Отражения (Трилогия)
32. В одном томе
Фантастика:
фэнтези
рейтинг книги
Выйду замуж за спасателя
1. Спасатели
Любовные романы:
современные любовные романы
рейтинг книги
Мастер 8
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Золушка по имени Грейс
Фантастика:
фэнтези
рейтинг книги
Девочка-яд
2. Молодые, горячие, влюбленные
Любовные романы:
современные любовные романы
рейтинг книги
Warhammer 40000: Ересь Хоруса. Омнибус. Том II
Фантастика:
эпическая фантастика
рейтинг книги
Вперед в прошлое 2
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Тактик
2. Офицер
Фантастика:
альтернативная история
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
