Программируя Вселенную. Квантовый компьютер и будущее науки
Шрифт:
Теперь ситуация будет следующей. Бит газа находится в состоянии 0. Бит демона 0, если бит газа сначала был в состоянии 0, и 1, если бит газа сначала был в состоянии 1. Две операции «условное не» с разными управляющими битами фактически поменяли начальный бит демона с начальным битом газа. Энтропия газа уменьшилась на один бит, но общая сумма информации газа и демона, взятых вместе, осталась неизменной. Демон не нарушает второго начала термодинамики!
Обратите внимание, что передача информации от газа к демону происходит в соответствии с принципом Ландауэра, приведенным выше. Цель демона – «стереть» бит газа, установив его значение в 0. Но фундаментальные законы физики сохраняют информацию, и поэтому демон может свести значение бита газа к 0, только передав информацию от бита газа
В статье о демоне Максвелла, опубликованной в журнале Scientific American, Чарльз Беннетт из IBM показал, как принцип Ландауэра не позволяет демону нарушить второе начало термодинамики, извлекая работу из одночастичного газа {7} . В последующей работе, опубликованной в Physical Review, я показал, что этот довод относится не только к системам битов, но и ко всем физическим системам – тепловым машинам, ураганам и чему угодно еще {8} . Физическую динамику можно использовать для того, чтобы получать информацию, и эту информацию можно использовать для того, чтобы уменьшить энтропию конкретного элемента системы, но общая сумма информации/энтропии при этом не уменьшится. (Читатель, которого интересует демонология, может ознакомиться с двумя сборниками статей под редакцией Харви Леффа и Эндрю Рекса о демоне Максвелла {9} .)
7
Чарльз Беннет. Демоны, двигатели и второе начало термодинамики, В мире науки, 1988 г., № 1. (Demons, Engines, and the Second Law, Scientific American, Vol. 257, No. 5, ноябрь 1987 г.)
8
«Use of Mutual Information to Decrease Entropy: Implications for the Second Law of Thermodynamics», Physical Review A, Vol. 39 (1989): 5378–5386.
9
Второй из упомянутых сборников является обновленной в 2003 г. версией первого, вышедшего в 1990 г. Сборник включает обзор и более 30 классических научных статей с 1874 по 2000 гг. (Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing. Ed. by Harvey S. Leff, Andrew F. Rex. Institute of Physics Publishing, Bristol & Philadelphia, 2003.)
Если решение проблемы демона Максвелла опирается на фундамент физического закона, требующего сохранения информации, то почему эта проблема создала такую путаницу в последние полтора столетия? Потому что она связана с различиями между информацией и энтропией. Как мы помним, энтропия – это невидимая информация, или «неведение», и она нам недоступна. Но различие между «видимым» и «невидимым» зависит от того, кто является наблюдателем. Поэтому можно уменьшить энтропию системы, просто наблюдая за ней.
Чтобы увидеть, как проявляется различие между видимой и невидимой информацией в случае демона Максвелла, давайте сравним точку зрения демона с точкой зрения стороннего наблюдателя. Наблюдатель, как и демон, знает, что значение бита демона сначала было равно 0, но не знает начального значения бита газа. В отличие от демона, наблюдатель не может следить за результатами выполнения цепочки операций «условное не». Он только знает, что эти операции имеют место. Таким образом, и наблюдатель, и демон согласны друг с другом относительно динамики взаимодействия между битом демона и битом газа, но граница между видимым и невидимым проходит для них в разных местах. В частности, бит демона после первой операции известен демону, но не наблюдателю.
Перед первой операцией и демон, и внешний наблюдатель знают, что энтропия бита демона равна нулю (его состояние известно), а энтропия бита газа равна единице (два возможных состояния). После первой операции бит демона полностью
Но что известно наблюдателю? После первой операции наблюдатель знает, что бит демона и бит газа в точности коррелируют. Их значения – или 00, или 11, но наблюдатель не знает, какие именно. Соответственно, наблюдатель считает, что бит демона и бит газа вместе взятые имеют энтропию в один бит. Поскольку информация, содержащаяся в газе и в демоне, остается для наблюдателя невидимой, он считает, что энтропия остается постоянной и составляет один бит.
После второй операции «условное не» бит, который первоначально находился в газе, перешел к демону. И демон, и наблюдатель знают, что состояние бита газа теперь равно 0. Демону его собственный бит известен: он хранит один бит информации, а энтропия равна нулю. Наблюдателю бит демона невидим, и поэтому для него энтропия составляет один бит. При этом и демон, и наблюдатель согласны, что общая сумма информации составляет один бит. Второе начало термодинамики относится к общей сумме информации, известной и неизвестной.
Остановим пока демона Максвелла и дискуссию об увеличении и уменьшении энтропии. Главное, как показали в конце XIX в. специалисты по статистической механике, мир состоит из битов. Второе начало термодинамики – это утверждение об обработке информации: фундаментальная физическая динамика Вселенной сохраняет биты и препятствует уменьшению их количества. Чтобы как следует понять эту физическую динамику, нужно обратиться к квантовой механике, которая описывает, как физические системы ведут себя на самом фундаментальном уровне. Но прежде чем заняться квантовой механикой, давайте кратко рассмотрим, как способны обрабатывать информацию классические системы, такие как атомы газа или шары на столе для игры в снукер.
Атомное вычисление
В положении и скорости атома газа содержится информация. Именно положения и скорости атомов были самыми первыми величинами, к которым были применены базовые формулы информации. Атомы хранят биты.
Но как обрабатывается эта информация? Когда сталкиваются два атома газа, информация, которую они содержат, преобразуется и обрабатывается. Соотносится ли обработка информации при столкновения атомов с обработкой информации, которую выполняют логические элементы, о которых мы говорили в первой части книги?
Как показали Эдвард Фредкин из Университета Карнеги-Меллона и Томмазо Тоффоли из Бостонского университета, столкновения атомов естественным образом совершают логические операции «и», «или», «не» и «копировать». На языке обработки информации столкновения атомов являются универсальными в вычислительном отношении.
В модели Фредкина и Тоффоли каждое возможное столкновение атомов выполняет операцию «и», «или», «не» и «копировать» над подходящим образом определенными входными и выходными битами. Назначая соответствующие начальные положения и скорости атомам газа, можно создать любую логическую схему. Сталкивающиеся атомы газа в принципе способны производить универсальные цифровые вычисления.
На практике, конечно, очень сложно заставить атомы газа выполнять вычисления. Даже если мы бы имели контроль над положениями и скоростями отдельных атомов, квантовая механика ограничивает точность, с которой можно одновременно указать их положение и скорость. Кроме того, столкновения между атомами газа являются неустранимо хаотическими; это значит, что даже небольшая ошибка в указании начальных положений и скоростей атомов, как правило, со временем будет увеличиваться, благодаря эффекту бабочки, пока не «загрязнит» все вычисления. Однако, как мы увидим в следующих главах, оба эти ограничения можно преодолеть, если использовать для производства вычислений более подходящие квантово-механические системы.