Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

По мере прибавления новых членов сами они убывают, а положительные и отрицательные до некоторой степени сокращают друг друга при суммировании, так что мы зарабатываем сходимость. Эта сходимость, правда, страшно медленная. Для получения результата с точностью в три значащие цифры приходится складывать более 7000 членов; в четыре цифры — более 86 000. На графике на рисунке 21.6 показаны первые 1000 результатов (хотя некоторые из самых левых при выбранном масштабе оказались за пределами рисунка); на этот раз не делается никаких попыток соединить точки между собой. Видно, что члены под знаком суммы действительно уменьшаются, хотя и делают это с достаточной ленцой.

Рисунок 21.6.То

же, что на рисунке 21.5 , но показана 1000 значений (точки не соединены между собой).

Окончательный результат равен -0,370816425…. Это, как мы помним, второй член в выражении (21.1) . Первый же член — это в нашем случае Li(20), равный 9,90529997763…. Третий равен ln 2, что составляет 0,69314718055994…. И четвертый член, тот самый надоедливый интеграл, добавляет пустячный результат 0,000364111…. Подставим все это в выражение (21.1) и — хлоп! — J(20) = 9,58333333… (что мы, конечно, и так знали).

VIII.

Закончим тем, что с использованием формулы Римана проведем полное вычисление (1000 000) — т.е. числа простых чисел в пределах одного миллиона — не ради веселья, хотя веселье и немалое, а для того, чтобы сделать несколько важных замечаний по поводу остаточного члена.

Как мы помним из главы 19.iv,

(1000 000) = J(1000 000) - 1/ 2 J(1000 000) - 1/ 3 J( 31000 000) - ….

Сколько же членов в правой части надо вычислять? До тех пор пока числа в скобках не станут меньше 2, потому что J(x)равна нулю, когда xменьше 2. Корень девятнадцатой степени из 1000 000 равен 2,069138…, а корень двадцатой степени 1,995262… Следовательно, можно остановиться на 19. Поскольку число 19 свободно от квадратов и имеет только один простой делитель — самого себя, — функция Мебиуса (19) имеет значение -1. Таким образом, последний член в правой части равен - 1/ 19 J( 191000 000). Всего в правой части будет 13 слагаемых, поскольку между 1 и 19 функция Мебиуса принимает ненулевые значения 13 раз — при аргументах 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19. Напомним, что функция Мебиуса равна нулю всякий раз, когда аргумент делится на точный квадрат (например, 4 или 9).

Каждое из этих 13 слагаемых состоит из четырех членов: главный член, вторичный член (куда и входят нули дзета-функции), член с ln 2 и интегральный член. Если сложить все эти 52 куска, получится (1000 000) — число, про которое мы заранее знаем из главы 3.iii, что оно равно 78 498.

Вся эта арифметика расписана в таблице 21.1 (там опущены строки с N, для которых J(N)равно нулю). Двигаясь вдоль строки Nи используя yдля обозначения N-го корня из одного миллиона, имеем главный член

, вторичный член
, член с ln 2, равный
, и интегральный член
. Суммы по строкам должны быть равны — и в самом деле равны — выражению ((N)/N)J(y).

Таблица 21.1.Вычисление (1000 000).

В качестве простой проверки возьмем строку с N = 6.

Поскольку миллион — это 10 6, корень шестой степени из миллиона — это просто 10. Значение J(10) легко посчитать — оно оказывается равным 16/ 3. Поскольку число 10 свободно от квадратов и представляет собой произведение двух простых чисел, функция Мебиуса (10) имеет значение +1. Итак, в строке с N = 6 последний столбец должен быть равен (+1)x( 1/ 6)x( 16/ 3). Это составляет 8/ 9, что и говорится в суммарной колонке для строки с N = 6.

При N = 1 главный член, равен просто Li(1000 000); именно такое приближение к точному ответу дает нам ТРПЧ. Какова же разница между этим приближением и (1000 000)? Ответ получается мгновенно путем простого вычитания: разность, вычисленная как (1000 000) минус Li(1000 000) (чтобы сохранить знаки в нашей таблице), равна -129,54916. Из чего эта разница слагается?

Вот из чего:

из главных членов – 100,20254
из вторичных членов – 29,37378
из членов с ln 2 0,03515
из интегральных членов – 0,00799

Наибольший вклад в разницу дают главные члены. Однако эти члены вполне предсказуемы — они убывают быстро и неуклонно.

Разница, возникающая из вторичных членов, имеет тот же порядок величины, однако составляющие ее компоненты — те самые вторичные члены — вызывают куда больше беспокойства. Первый вторичный член достаточно велик и отрицателен; правда, нет никаких очевидных причин, почему он должен оказаться именно таким. Но и другие не очень помогают. Если просто двигаться вниз вдоль колонки с вторичными членами, не обращая внимания на знаки минус, а следя только за тем, будет ли каждый следующий член больше или меньше предыдущего по величине, то мы увидим такое: меньше, больше, меньше, меньше, больше, меньше, меньше, больше, меньше, меньше, больше, больше. Вторичный член при N = 19 оказывается почти таким же, как и при N = 6. Все эти вторичные члены — члены, которые выражаются через нули дзета-функции, — джокеры в нашем вычислении. А члены с ln 2, как и было обещано, несущественны.

Вспомним о статье Литлвуда 1914 года (см. главу 14.vii), где он доказал, что неверно утверждение, что Li (x)всегда превосходит (x). Это означает, что разность рано или поздно станет положительной. Поскольку главные члены очень быстро убывают по величине, а функция Мебиуса делает несколько первых из них отрицательными, включая и по-настоящему большие (при N = 2, N = 3 и N = 5), нелегко представить себе, как же эти главные члены вообще могут внести в разность какой-нибудь иной вклад, кроме как большое отрицательное число. Если в итоге разность должна оказаться положительной (а Литлвуд доказал, что такое рано или поздно случится), то это отрицательное число должно поглотиться большими, положительными, вторичными членами. Чтобы такое произошло, вторичные члены — нули дзета-функции — должны серьезным образом выйти из-под контроля. Судя по всему, так они и делают.

IX.

Чтобы еще глубже разобраться в смысле остаточного члена, снова взглянем на двойную спираль в правой части рисунка 21.4 . Она представляет нам функцию Li( x критическая прямая) при x= 20. Критическая прямая — испещренная, если ГР верна, всеми нетривиальными нулями дзета-функции — отображается под действием функции Li(20 z ) в спираль. Что будет, если вместо 20 мы возьмем какое-нибудь большее значение х? Какой вид примут соответствующие спирали?

Поделиться:
Популярные книги

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Ложная девятка 2

Риддер Аристарх
2. 4-4-2
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ложная девятка 2

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Идеальный мир для Лекаря 29

Сапфир Олег
29. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 29

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!