Чтение онлайн

на главную - закладки

Жанры

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
Шрифт:

Главный член тоже не представляет особой проблемы. В главе 7.viii мы уже определили функцию Li (x)как площадь под кривой 1/ln t, измеряемую от нуля до x; мы также привели Теорему о распределении простых чисел (ТРПЧ) в виде (N)~ Li (N).В нашем главном члене x— вещественное число, а потому значение Li (x)можно взять из математических таблиц или же вычислить с помощью любой нормальной математической программы, типа Maple или Mathematica. [193]

193

Ради тех читателей, которых мое изложение воспламенило до такой степени, что они готовы немедленно бежать за покупкой какой-нибудь из математических программ, мне надо, видимо, заметить, что относительно достоинств различных таких программ ведутся яростные споры вполне в духе

неувядающих дебатов на тему PC/Macintosh, причем создатель Mathematica Стивен Волфрам играет там роль Билла Гейтса. Будучи простым журналистом, я прошу считать себя на этой войне hors de combat(выбывшим из строя (франц.) — Примеч. перев.). Я определенно не занимаюсь пропагандой от имени Mathematica. Она была первой математической программой, которая мне попалась, и осталась единственной, которой я пользовался. Она всегда делала то, что я ей говорил. Если уж начистоту, то иногда требовалось ее слегка пинать, но мне никогда не попадалась программа, которую не приходилось бы время от времени пинать.

Разобравшись таким образом с первым, третьим и четвертым членами в выражении (21.1) , мы сфокусируемся на втором, имеющем вид Li (x ). В нем — корень происходящего, и дело тут нешуточное. Сначала я в общих чертах расскажу, что он означает и как он попал в выражение (21.1) . А потом разберу его на части и покажу, почему он играет ключевую роль для понимания распределения простых чисел.

III.

Знак — это приглашение к тому, чтобы суммировать, т.е. складывать многое в одно. На множество, по которому производится суммирование, указывает маленькая буква под знаком . Эта буква — не латинская p, а ро — семнадцатая буква греческого алфавита, причем в данном случае она фигурирует в значении «корень». [194] Для вычисления этого вторичного члена надо сложить друг с другом Li (x )для всех корней, по очереди придавая букве значение, равное каждому из корней. Что это, кстати говоря, за корни? Ясное дело, ведь это нетривиальные нули дзета-функции Римана!

194

По-английски — root; на первый звук в этом слове и указывает буква ро, также представляющая звук «р» — в духе того, как греческая же буква мю (звук «м») использовалась в честь Мебиуса (см. главу 15). Математики часто применяют подобные фонетические соответствия в качестве мнемонических. Здесь может быть уместным упомянуть, наконец, что для англоязычного читателя фонетически ассоциируется с буквой z. (Примеч. перев.)

Как же все эти нули попали в выражение для J(x)? Объяснить это я могу лишь в общих чертах. Вспомним выражение, которое мы, повернув Золотой Ключ, получили в главе 19:

Мы говорили, что у математиков есть способ обратить это выражение — вывернуть его наизнанку, т.е. выразить J(x)через дзета-функцию. Процедура обращения в действительности и длинна, и сложна; в большинстве из составляющих ее шагов задействована математика, выходящая за рамки того, что приводится в этой книге. Поэтому-то я и перескочил прямо к окончательному результату — выражению (21.1) . Тем не менее, как мне кажется, я в состоянии объяснить одну часть этой процедуры. Дело в том, что один шаг в этом обращении заключается как раз в выражении дзета-функции через ее нули.

Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z 2– 11 z+ 28 = 0 (однако будем писать букву zвместо x, поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z, то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 - 110 + 28, что дает 18. Если подставим аргумент i, то значением функции будет 27 - 11 i.

А каковы решения уравнения z 2– 11 z+ 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z 2– 11 z+ 28.

Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как ( z– 4)( z– 7).

По правилу знаков это можно записать и как (4 - z)(7 - z). Еще один способ записи — это 28(1 - z/4)(1 - z/7). Смотрите: так или иначе, мы выразили функцию z 2– 11 z+ 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z 5– 27 z 4+ 255 z 3– 1045 z 2+ 1824 z– 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: -1008(1 - z/1)(1 - z/3)(1 - z/4)(1 - z/7)(1 - z/12). Любую полиномиальную функцию можно переписать через значения ее нулей.

Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z, при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.

Функции, область определения которых составляют все комплексные числа и которые ведут себя достаточно симпатичным образом (для чего имеется точное математическое определение!), называются целыми функциями. [195] Все полиномиальные функции — целые. Показательная функция — тоже целая. Однако рациональные функции, которые мы рассматривали в главе 17.ii, не целые, потому что знаменатели в них могут обращаться в нуль. Функция ln также не является целой: у нее нет значения при нулевом аргументе. Подобным же образом у дзета-функции Римана нет значения при аргументе, равном единице, а потому она не является целой функцией.

195

Употребительных слов, особенно русских, не хватает, подобно тому как, по замечанию автора в главе 3, не хватает греческих букв; целые функции и целые числа имеют мало общего. (Примеч. перев.)

Целая функция может не иметь нулей вовсе (как, например, показательная функция: равенство e z= 0 никогдане выполняется), может иметь их несколько (как, например, полиномиальные функции: числа 4 и 7 — нули функции z 2– 11 z+ 28), а может — бесконечно много (как, например, синус, который обращается в нуль при всех целых кратных числа ). [196] Ну и раз полиномиальные функции выражаются через свои нули, интересно, можно ли все целые функции выразить подобным же образом? Пусть у нас есть какая-нибудь целая функция — назовем ее F, — определяемая бесконечной суммой вида F(z) = a + bz + cz 2 + dz 3 + …, и пусть еще нам удалось узнать, что у этой функции бесконечно много нулей; назовем их , , , …. Можно ли выразить данную функцию через ее нули, в виде бесконечного произведения F(z) = а(1 - z/)(1 - z/)(1 - z/)… — как если бы бесконечная сумма была чем-то вроде «сверхмногочлена»?

196

Хотя здесь нет прямой связи с нашими рассуждениями, я не могу удержаться и не сказать, в качестве интересного добавления, что одна из самых знаменитых теорем в теории функций комплексной переменной касается целых функций. Эту теорему сформулировал Эмиль Пикар (1856-1941). Теорема Пикара утверждает, что если целая функция принимает более одного значения — если, иными словами, она не равна просто-напросто постоянной, — то она принимает все(комплексные. — Примеч. перев.) значения, кроме, быть может, одного. Значение, которое не принимает функция e z, — это как раз нуль.

Ответ таков: да, при определенных условиях можно. И когда такое удается сделать, получается, как правило, чрезвычайно полезная штука. Например, именно таким способом — применив подобное рассуждение к синусу — Эйлер и решил базельскую задачу.

Но какая нам польза от всего этого для дзета-функции, которая, увы, не является целой функцией? Дело в том, что в ходе упомянутой выше сложной процедуры обращения Риман преобразовал дзета-функцию в нечто слегка от нее отличающееся — в целую функцию, нули которой суть в точности нетривиальные нули дзета-функции. И эту-то слегка измененную функцию можно выразить через данные нули. (Тривиальные нули спокойно исчезли в ходе преобразования.)

Поделиться:
Популярные книги

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Ложная девятка 2

Риддер Аристарх
2. 4-4-2
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ложная девятка 2

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Идеальный мир для Лекаря 29

Сапфир Олег
29. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 29

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Наследник павшего дома. Том I

Вайс Александр
1. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том I

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Измена. Тайный наследник

Лаврова Алиса
1. Тайный наследник
Фантастика:
фэнтези
5.00
рейтинг книги
Измена. Тайный наследник

Газлайтер. Том 8

Володин Григорий
8. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 8

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!