Чтение онлайн

на главную - закладки

Жанры

Пространство, время и движение. Величайшие идеи Вселенной
Шрифт:

Формула интеграла от логарифма так же проста:

(A.20)

Производная логарифма:

(A.21)

Интеграл от него:

(A.22)

Для тренировки попробуйте посмотреть, как изменятся эти формулы при a = e, когда ln(a) = ln e = 1.

Тригонометрические

функции

И наконец, мы рассмотрим еще один набор часто используемых функций: тригонометрические функции, а именно синус и косинус. Их аргументы, как правило, представляют собой углы, а не просто реальные числа, и чтобы подчеркнуть это, мы будем использовать букву ? вместо x. Кроме того, важно сказать, что все углы мы будем измерять в радианах, а не в градусах. Сто восемьдесят градусов соответствуют ? радиан. Несложно выполнить и обратное преобразование.

Мы обсуждали тригонометрические функции в главе 3, поэтому здесь мы сразу перейдем к их интересным свойствам. Теорема Пифагора показывает нам знаменитое соотношение между синусом и косинусом:

(sin ?)2 + (cos ?)2 = 1. (A.23)

Также по теореме Пифагора мы можем определить модуль (длину) вектора

с компонентами vi в трехмерном пространстве Евклида:

(A.24)

Тогда скалярное произведение двух векторов мы можем выразить двумя равнозначными способами: через компоненты и при помощи косинуса угла между векторами:

(A.25)

Синус и косинус, что любопытно, являются производными друг друга:

(A.26)

(A.27)

Главное, не перепутать, где ставить минус. Запомнить это несложно: график cos ? начинается с единицы и направлен вниз. Значит, его производная для небольших углов будет отрицательна, что означает — sin ?. Интегралы находятся аналогичным образом. Единственное отличие — минус появляется в другом месте (что и логично, ведь интеграл — обратное действие к взятию производной).

(A.28)

(A.29)

Приложение Б. Связность и кривизна

Обсуждая геометрию (глава 7), мы рассмотрели все понятия, нужные для понимания концепции геодезических линий и уравнения Эйнштейна, не сказав при этом ни слова о том, как вывести их из какой-то произвольной метрики. Заполним пробелы. Представим себя в четырехмерном пространстве-времени и перейдем с латинских букв на греческие. Впрочем, все формулы будут работать и в обычном пространстве, и при любом количестве измерений.

Когда в главе 8 мы выводили уравнение Эйнштейна, нам потребовался скаляр кривизны Риччи, который можно получить при помощи «обратной метрики». Давайте обсудим, что это такое. Для начала введем чрезвычайно полезный тензор — дельту Кронекера, у которой есть один верхний и один нижний индекс. В четырех измерениях он выглядит следующим образом:

(Б.1)

В

матричном представлении дельта Кронекера представляет собой единичную матрицу — аналог единицы в стране матриц: при умножении любой матрицы на единичную мы получаем исходную матрицу.

С учетом этого можно представить обратную метрику как тензор, который нужно умножить на исходную метрику, чтобы получить дельту Кронекера. Метрический тензор gµ? представляет собой симметричный тензор с двумя нижними индексами, а значит, обратная метрика будет симметричным тензором с двумя верхними и соответствовать следующему условию:

gµ?g?? = ?µ?. (Б.2)

Какое прекрасное зрелище! Взгляните на индексы. В формулах с тензорами они бывают двух типов: немые и свободные. Немые индексы всегда встречаются дважды: один раз вверху и один раз внизу, как ? в выражении (Б.2). Сама буква значения не имеет, важно лишь, чтобы она была и в верхней, и в нижней позиции. (Суммировать только по верхним или только по нижним импульсам нельзя.) Свободные индексы, напротив, встречаются только один раз, как µ и ? в выражении (Б.2). Мы можем выбрать любые буквы, но крайне важно, чтобы они были в каждом слагаемом (то есть произведении элементов тензоров). Именно так происходит в выражении (Б.2): верхний индекс µ и нижний индекс ? — свободные индексы, которые есть и в левой, и в правой части. Попытка сложить тензоры с несовпадающими свободными индексами ни к чему хорошему не приведет.

В обычной геометрии Евклида о метриках ничего не говорится. Но это не значит, что их там нет. Например, мы можем сказать, что скалярное произведение двух трехмерных евклидовых векторов равно

. Мы можем записать и саму метрику. В декартовой системе координат она будет выглядеть так:

(Б.3)

Сравнив элементы (трехмерных модификаций) матриц из выражений (Б.1) и (Б.2), получим обратную матрицу, которая будет выглядеть точно так же:

(Б.4)

Именно поэтому можно пройти полный курс геометрии в средней школе, ни разу не услышав слово «метрика». В плоском пространстве и декартовых координатах все элементы метрики, обратной метрики и дельты Кронекера одинаковы.

Однако в общем случае это не так: элементы обратной метрики обычно не совпадают с элементами обычной. Если метрика диагональна, нам повезло (чего не сказать о тех, кому досталась не диагональная): все элементы обратной метрики будут обратны по отношению к элементам обычной. Например, для плоского трехмерного евклидова пространства в сферических координатах метрика равна:

(Б.5)

Обратная метрика в этом случае будет равна:

(Б.6)

В плоском пространстве мы можем, по крайней мере, выбрать декартову систему координат, в которой обычная метрика совпадает с обратной. Но в общем случае такой возможности нет, поэтому метрики важно различать.

Наличие обычной и обратной метрик позволяет нам выполнять две любопытные операции с тензорами: опускание и поднятие индекса. Как можно заметить даже по обозначениям матриц, разница между верхними и нижними индексами принципиальна. Но мы можем опустить верхний индекс, то есть сделать его нижним. Для этого тензор нужно умножить на метрику и просуммировать по этому индексу. Аналогичным образом можно поднять нижний индекс при помощи обратной метрики. Например, если у нас имеется вектор vµ, можно сказать, что:

Поделиться:
Популярные книги

Наследие Маозари 3

Панежин Евгений
3. Наследие Маозари
Фантастика:
рпг
аниме
5.00
рейтинг книги
Наследие Маозари 3

Совок 13

Агарев Вадим
13. Совок
Фантастика:
попаданцы
5.00
рейтинг книги
Совок 13

Госпожа Доктор

Каплунова Александра
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Госпожа Доктор

Королева Солнца. Предтечи. Повелитель зверей. Кн. 1-17

Нортон Андрэ
Королева Солнца
Фантастика:
фэнтези
6.25
рейтинг книги
Королева Солнца. Предтечи. Повелитель зверей. Кн. 1-17

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Вспомнить всё (сборник)

Дик Филип Киндред
Фантастика:
научная фантастика
6.00
рейтинг книги
Вспомнить всё (сборник)

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

Жена неверного ректора Полицейской академии

Удалова Юлия
Любовные романы:
любовно-фантастические романы
4.25
рейтинг книги
Жена неверного ректора Полицейской академии

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Сколько стоит любовь

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.22
рейтинг книги
Сколько стоит любовь

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16