Чтение онлайн

на главную - закладки

Жанры

Шрифт:

4. Чем сложнее система, тем сложнее ее подсистемы (как элементы) – до появления разных уровней синергетики. Системе выгодно, чтобы ее элементы эволюционировали, рождались и умирали. Так они могут выполнять различные функции на различных временных отрезках и, в зависимости от внешних условий, обновлять содержание системы. Это позволяет ей быть пластичной и тонко реагировать на изменения энергетического потока, на котором она эволюционирует.

5. Все живые существа состоят из однотипных клеток.

6. Все биологические структуры – это апериодические кристаллы.

7. Самосборке субклеточных структур соответствует фрактальная модель морфологии органов.

8. Все живые организмы, независимо от их размеров и уровня организации, питаются только одним пространственным изомером, или правым или левым.

9. Все живые системы открытые, и в них за счет аллотропной формы (эпитаксиальных пленок) протеина происходит упорядоченный переход разных видов симметрии, с нано– до макроуровня.

10. Все живое обладает отрицательной энтропией.

11. Все организмы состоят из 4-х элементов: Н, О, N и С. Эти элементы самые распространенные в Космосе, но не на Земле. Их валентность составляет 1, 2, 3 и 4.

12. Через любое живое существо проходит «мировая пространственная линия», независимо от вида

его симметрии.


Как происходит материализация вещества, в том числе и живого? Получается такая последовательность: неоднородности взаимопроникающих потоков пространств, в совокупности превышая некий допустимый уровень энергии, «консервируются» в массу. Как система они должны существовать за счет двух информационных потоков (потоков пространственных подоснов): это поток, формирующий сами объекты, и поток, формирующий их связь между собой. Потоки – это набегание пространств друг на друга, где частицы являются динамическим «уплотнением» постоянно взаимодействующих элементов обоих потоков. Взаимоотношения между частицами тоже подчиняются характеристикам потоков. Сами же потоки упорядочиваются электромагнитным излучением, рожденным взаимодействующими частицами. Это позволяет усложняться и частицам, и их взаимоотношениям, то есть материальным системам, и живым в том числе. Реализуется реальный физический процесс, обязанный своим существованием динамической симметрии, который приводит к появлению дискретных физических и биологических объектов из непрерывного физического вакуума, что в математическом описании представлено как достижение физическими величинами своих предельных значений. Не исключено, что процесс материализации выглядит следующим образом. Пространства «текут» друг относительно друга. Течение может быть ламинарным, турбулентным и кавитационным. Первые два вида течения создают материю и энергию, а жизнь – это кавитационная форма пространственных потоков. Живые существа нарождаются, как кавитационные пузырьки, существуют и «схлопываются» после выполнения своей функции… Помня о подобии, невольно укрепляешься в мысли: «Живое – это порождение кавитации пространств, воплощенное в материи». Упрощенно на примере молекул воды можно представить, как это происходит. Кавитационные полости возникают в воде, как трещины в твердом теле. Ввиду того, что молекулы воды сильно полярны, кавитация концентрирует энергию и вызывает свечение их на противоположных концах. Белок в аллотропной фазе фотоактивен, и вода при определенных условиях светится. Вот вам и светоносный квантум-гель, диссимметратор, материальная основа жизни…

Теперь мы можем смело искать истоки времени в динамической симметрии биологических систем всего лишь только потому, что это одно и тоже. Все живые (и не только) организмы построены на дискретности, на волнах и квантах, только масштабы структур разные. Обобщенная волна, соответствующая данной структуре или системе, как кванту, может полностью или частично входить в ближнее или дальнее поле структуры (системы). Поэтому первоначально остановимся на соотношении функций и ответственности контролеров волны и кванта. Поясним читателям, что может входить в понятие контролеров: это аттракторы, индукторы, невидимые оси симметрии и т. д. Можно выделить два предельных случая, анализ которых представляет значительный интерес. Иногда возникают такие обстоятельства, что иерархические процессы, происходящие от кванта и волны, доходят друг до друга и вступают в резонансное взаимодействие, создавая новые устойчивые резонансные структуры, во многом более устойчивые, чем сформировавшие их квант и волна. Наиболее интересным примером может служить формирование многоклеточных организмов, имеющих масштабы, промежуточные между клеткой и биосферой. Человек также является примером такой резонансной структуры. Здесь необходимо сделать некоторые замечания. Во-первых, о предпочтительных масштабах таких резонансных процессов и структур. Некоторые предположения могут быть сделаны на основании имеющихся эмпирических данных. Ранее мы указывали на то, что часто наблюдается иерархия соотношений квант-волна. Эта иерархия обладает квазифрактальным свойством, а именно, соотношение мер (например, масс) в этих иерархических цепочках представляет иногда очень большие величины приблизительно одного порядка. Можно предположить, что резонансными оказываются структуры, квадрат меры которых приблизительно равен произведению мер кванта и волны, то есть структуры, которые оказываются волнами меньшего масштаба для сформировавших их квантов и квантами более крупного масштаба для волны, явившейся их прародителем. Если эту гипотезу удастся обосновать теоретически, то она станет еще одним фундаментальным законом природы, объясняющим фрактальность окружающего нас мира, да и нас самих. Так как появление такого рода резонансов, по-видимому, является результатом двух фрактальных цепочек структуроформирования, то, появившись, эти резонансные структуры вновь стимулируют образование двух новых типов резонансных структур, лежащих между первичными квантами и вновь появившимися резонансами и между вновь появившимися резонансами и первоначальной волной. Этот процесс может продолжаться достаточно долго, он формирует различные типы промежуточных иерархических структур между первоначальным квантом и первоначальной волной.

 

На каждом уровне иерархии существует некоторое количество более или менее идентичных структур, то есть формируется иерархия субволн и суперквантов. В простейшем случае между количествами и мерами суперквантов (макроквантов) устанавливается следующее соотношение: число суперквантов, находящихся в первичной волне, умноженное на величину их меры, есть величина постоянная и равная числу квантов в первичной волне. Этот результат соответствует предложенной модели идеального трансформера и подтверждается эмпирическими данными, полученными при исследовании сложных иерархических систем, состоящих из большого числа элементов с различной мерой. Возможно, здесь кроется объяснение известного эмпирического факта, состоящего в том, что основными статистическими распределениями в иерархических системах являются степенные распределения.

Из дополнительных резонансных соображений могут быть найдены также и минимальные коэффициенты пропорциональности между мерами и числом членов иерархии, которые оказываются близкими либо к числу 2, либо к числу 1.6180339…, называемому, как известно, золотым сечением. Не зря это число называется символом гармонии.

В действительности, вследствие неоднородности квантов, а также в результате внешних воздействий формирование иерархической цепочки происходит часто со значительными отклонениями от простого гиперболического закона. Рассмотрим простейший случай. Пусть между квантом

и сформировавшейся волной появилась лишь одна резонансная структура промежуточного по мере масштаба, которая может участвовать в собственных бифуркационных процессах. Тогда наряду с контролерами кванта и волны возникает новый контролер этой резонансной структуры, а увеличение количества контролеров может (хотя и не всегда) привести к увеличению энтропии – информации, перерабатываемой каждым из них и передающейся с одного уровня иерархии на другой. Появление такой возможности может увеличить энтропию – информацию, перерабатываемую на каждом уровне иерархии, что резко увеличивает безопасность системы за счет возможности делегировать управляющие функции в нужный момент на тот уровень иерархии, на котором наблюдается максимальная опасность для системы в целом. Тем самым, создав иерархию масштабов элементов натуральных систем, природа создала систему оптимального в данных условиях распределения управляющих функций между возникающими и существующими функциями подструктур и их контролеров. Такими контролерами, например, в клеточных мембранах являются шапероны и интермедиаты, то есть посредники. В более масштабной структуре – в организме – этот закон продолжает функционировать через аллотропную форму протеина, автоволновой процесс, молекулы ДНК и РНК. Эта проблема решается по-разному, однако можно высказать один принцип, который можно считать бесспорным. Выживают и живут долго те иерархические системы, которые обеспечивают своим квантам и подсистемам оптимальный для них уровень обмена мерой между собой и с окружающим полем и оптимальное распределение информации и управляющих характеристик между контролерами различных квантов и уровней иерархии. Оптимальность определяется обеспечением максимальной скорости роста энтропии-информации, управляемой всеми контролерами системы. Если такой рост прекращается, то система стабилизируется, что приводит к нарастанию внутренних противоречий между ее контролерами и снижению управляемости системой энтропии-информации, а затем деградации системы и ее гибели от внутренних противоречий либо от резкого изменения условий поля, которым не сможет противостоять совокупность контролеров системы.

Наиболее четко такая дифференциация квантов-клеток, управляемая порождающим контролером-геномом, прослеживается в организмах растений и животных, в частности, в организме человека (как обобщенной волны). Однако такое же расщепление квантов-людей в волне – человеческом обществе – частично унаследовано от прачеловека и, существенно меняясь, наблюдается в течение всего времени существования человечества как вида. Именно это расщепление является одной из причин формирования иерархии промежуточных резонансных структур и соответствующих им динамических процессов между квантом-человеком и волной-человечеством. Дифференциация людей может играть в этих процессах как структурообразующую, так и структуроразрушающую роль, в зависимости от внешних условий и степени дифференциации.

Таким образом, введя континуальную составляющую поля и геометрию n-мерного многообразия, в котором структура взаимодействует с полем, мы получили одно из возможных условий, определяющих приближение, а возможно, и свершение того процесса, который ранее был назван нами бифуркационным событием. Во многих случаях условием свершения бифуркационного события является сближение взаимодействующих структур на такое расстояние, что невозможно выделить у них сверхближнего поля. Этот случай является наиболее интересным для анализа механизма прохождения бифуркационного взаимодействия структур и систем, и его изучение позволяет вскрыть глубинные причины бифуркационных событий и классифицировать их в случае взаимодействия двух или нескольких структур (как это было сделано нами в случае классификации бифуркационных трансформаций изолированных волн, вихрей и грибовидных структур). Эти положения отражают процессы, объясняющие появление раковых структур, момент появления бифуркации в развитии тканей.

Интенсивно изучаемые в настоящее время процессы взаимодействия солитонов, ударных волн и границ, вихревых процессов, грибовидных и мультипольных структур обнаруживают все новые и новые закономерности этих процессов, моделируемых при изучении взаимодействия особых областей комплексных дифференцируемых многообразий.

О том, что в живых организмах квантовые и автосолитонные механизмы являются основными в интеграционных процессах, говорят следующие факты. По образному выражению академика Гольданского, уже на предбиологической стадии эволюции вместо стохастической химии требуется алгоритмическая химия. Ни для кого не секрет, что процесс самоорганизации биологических систем достаточно иерархичен. Именно в этом радикальное отличие живого. Но элементы иерархии наблюдаются и в неживых системах, в чисто физических системах – спиновых стеклах, кластерах, наночастицах, больших молекулах и биополимерах. Физика таких систем и структур – очень интересна, потому что именно тут физики столкнулись с серьезными теоретическими проблемами. Оказалось, что иерархическую «конструкцию» очень неудобно описывать той математикой, которая основана на естественных для нас представлениях о числах. И это не техническое неудобство. Это проявление законов, которые нам еще предстоит изучить.

Есть понимание того, что противоречие носит глубинный характер. Здесь возникает вопрос о необходимости появления новой математики. Р-адические числа и т. д., но это уже тема отдельного разговора. Это противоречие убирается, если в силу вступают законы, описанные в квантовой физике. Кванты могут играть роль связующего звена между алгоритмической химией и физическими системами. Все системы организма, его ткани ведут себя как сплошное тело. В нем с невероятной скоростью происходят миллиарды реакций синтеза и распада молекул. Мало того, одновременно с этими процессами идет сортировка по пространственному признаку на право– и левовращающиеся молекулы… Только опираясь на квантовый механизм считывания и передачи информации (разделенные кванты помнят друг о друге независимо от расстояния между ними), можно укладывать и соединять макромолекулы того же белка с такой быстротой и точностью. Несомненно, верховной организующей силой наводящей порядок в системах: кластеры, наночастицы, биополимеры, клетки и ткани, – является сила, исходящая из пространства, ее анизотропии. В ряде случаев анизотропия порождает скручивание пространства с порождением торсионных и аксионных полей. А они, в свою очередь, при некоторых обстоятельствах «скручивают» свет, и наоборот. Эти умозаключения подтверждаются результатами исследований физиков. С одной лишь оговоркой – если допустить, что в живых организмах существуют: полярно противоположные торсионные, аксионные, магнитные, энергетические и оптические вихри. Все процессы структурообразования зависят от кинетики, скорости вихрей и их динамики. Рассмотрим пространство не как пустоту, а как физическую субстанцию, но живущую по своим законам…

Поделиться:
Популярные книги

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

На границе империй. Том 10. Часть 5

INDIGO
23. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 5

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Надуй щеки!

Вишневский Сергей Викторович
1. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки!

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Глубина в небе

Виндж Вернор Стефан
1. Кенг Хо
Фантастика:
космическая фантастика
8.44
рейтинг книги
Глубина в небе

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5