Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
22.11. Воспользовавшись тем, что 2 + cos x > 0 и 2 cos^2 x/2 >= 0, можно уточнить интервал значений левой части уравнения.
22.12. Левая и правая части лежат в интервале монотонности синуса. (!)
22.13. Уточнение интервалов с тем, чтобы получить равносильное уравнение, приведет к нерациональному способу решения. Проще перенести, например, arctg (x + 1) в правую часть и взять котангенсы от обеих частей. Каким образом может быть нарушена равносильность?
K главе 23
23.1.
23.2. В указанной последовательности действий первое ограничение накладывается на трехчлен x^2 - x– 1, он должен быть положительным. Следующее ограничение накладывается уже на log 1/2 (x^2 - x– 1). (!)
23.3. Нужно пройти всю последовательность действий, начиная с самого внутреннего, и записать все встречающиеся при этом ограничения. (!)
23.4. Найдя область определения функции arccos (x^2 - 3x + 1), исключить точки, в которых не существует tg 2x. (!)
23.5. Решить графически систему неравенств, обеспечивающих существование данного выражения. (!)
23.6. Способ 1. Доказательство можно вести от противного, предположив, что функция имеет период T.
Способ 2. Найти корни функции и исследовать их в предположении, что у функции имеется период.
23.7. Записать тождество, равносильное условию, что f(x) имеет своим периодом число T. Рассмотреть это тождество при x = 0 и x = ±T. (!)
23.8. Ясно, что любое общее кратное периодов cos 3x/2 и sin x/3 будет периодом данной функции. Доказать, что наименьшее общее кратное будет основным периодом.
K главе 24
24.1. Заменить cos^2 x на 1 - sin^2 x. В результате получится квадратный трехчлен относительно sin x.
24.2. Записать у как одну функцию другого аргумента.
24.3. Привести к одной тригонометрической функции другого аргумента.
24.4. Выражение можно представить в виде А^2 + В^2 + С, где С — константа.
24.5. Чтобы раскрыть знаки абсолютных величин, нужно нанести на числовую ось точки ±1 и ±2, которые разобьют ее на пять интервалов.
24.6. Воспользоваться неравенством между средним арифметическим и средним геометрическим нескольких чисел.
24.7. Чтобы найти максимум AB + BC, удобно ввести углы x
24.8. Если обозначить катеты основания через а и b, то боковая поверхность призмы равна
причем ab = 4.
24.9. Квадрат должен быть вписан в шестиугольник так, чтобы не нарушалась симметрия, т. е. центр квадрата должен совпадать с центром шестиугольника.
24.10. Прежде всего необходимо обратить внимание на свойства квадратного трехчлена, стоящего в знаменателе. Его дискриминант отрицателен и, следовательно, трехчлен не может быть равен нулю при действительных x.
Если обозначить теперь данную дробь через у, то можно получить квадратное уравнение относительно x, в котором у играет роль параметра.
24.11. Если ребра параллелепипеда обозначить через а, b и с, то условие задачи можно записать в виде системы
Из второго и третьего неравенств следует, что
ab + с(а + b) >= ab + 5с.
24.12. Чтобы найти наименьшее значение этой функции, естественно выделить полный квадрат. Однако удобнее вначале перейти от котангенсов к косекансам, что позволяет выразить функцию только через синусы:
Теперь в числителе следует выделить полный квадрат разности. При этом могут представиться два случая, в зависимости от знака произведения sin ( + x) sin ( - x). Чтобы не рассматривать их отдельно, можно необходимые преобразования записать так:
sin^2 ( + x) + sin^2 ( - x) = [|sin ( + x)| - |sin ( - x)|]^2 + 2 |sin ( + x) sin ( - x)|.
24.13. Известно, что arcsin x + arccos x = /2 . Поэтому данную функцию удобно преобразовать так, чтобы воспользоваться этим соотношением.
24.14. Воспользоваться преобразованием нормирования:
после чего коэффициенты при sin и cos можно объявить косинусом и синусом общего аргумента , т. е.