Сборник задач по математике с решениями для поступающих в вузы
Шрифт:
20.11. Каждое слагаемое после домножения на 2 sin /2n представить в виде разности косинусов.
20.12. Нетрудно заметить, что ряд 2S отличается от ряда S на величину, которая легко может быть сосчитана.
20.13. Запишем два соседних члена ряда:
К главе 21
21.1. Так как сосед справа и сосед слева неразличимы, то можно любого из сидящих оставить на месте, а остальных попросить пересесть на место, симметричное относительно того, кто остался на своем месте.
21.2. Обратить внимание на то, что, вычитая перестановки, в которых на первом месте стоит элемент а1, и перестановки, в которых на втором месте стоит элемент а2, мы некоторые перестановки вычтем дважды.
21.3. Поскольку в нашем распоряжении имеются семь разрядов, то выбрать места для трех двоек можно
21.4. Число не может начинаться с цифры 0. На сколько больше чисел мы получим, если не учтем это обстоятельство?
21.5. Экскурсантов для заселения первой каюты можно выбрать
21.6. Доказать, что
21.7. После упрощений мы придем к квадратному уравнению относительно n и k, которое нужно решить в целых числах. Удобнее решать это уравнение относительно k.
21.8. Все получившиеся после раскрытия скобок члены не будут подобными. Остается сосчитать их число.
21.9. Если n — 1 < k <= 2(n — 1), то члены, содержащие xk, могут быть получены лишь в результате перемножения членов суммы xk - n + 1 + ... + ... + xn — 1.
21.10. Мы приходим к неравенству
21.11. Наиболее удобной является группировка
После того как мы применим формулу бинома и к (1 + x^2)k, получим, что в общем члене содержится x100 - (5k– 2m). Остается выяснить, принимает ли 5k– 2m все значения от 0 до 100, и если не все, то сколько значений окажутся пропущенными. Следует иметь в виду, что m, k = 0, 1, ..., 20,
21.12. Для получения рекуррентной формулы достаточно разобрать два случая: а) в первой группе один элемент (а1); б) в первой группе два элемента (а1, а2).
21.13. Чтобы получить рекуррентную формулу, связывающую Mn и Mn + 1, где через Mn обозначен ответ задачи, нужно найти число точек пересечения (n + 1)-й прямой со всеми остальными. Как с этим числом связано количество вновь образовавшихся областей?
Рекуррентное соотношение будет иметь вид
Mn + 1 = Mn + m + n + 1
К главе 22
22.2. После того как найдена сумма двух первых слагаемых, можно воспользоваться формулой синуса суммы, так как третье слагаемое положительно, но меньше /4, и вся сумма не больше /2.
22.4. Так как оба слагаемых расположены в интервале [0, /2], то все тригонометрические функции от них неотрицательны.
22.5. Воспользоваться формулами приведения с тем, чтобы под знаком арккосинуса стоял косинус, а не синус.
22.9. Если перенести acrsin 3x/5 в правую часть и взять синусы от обеих частей, то в предположении, что x > 0, получим уравнение, равносильное данному.
22.10. После взятия косинусов от обеих частей уравнения получится иррациональное уравнение, при решении которого возможно приобретение посторонних корней.
22.11. Так как обе части лежат в интервале (-/2, /2), то от обеих частей данного уравнения можно взять тангенсы, что не нарушит равносильности.
22.13. Ясно, что в результате взятия котангенсов от обеих частей равенства мы можем получить посторонние корни, так как у неравных углов могут быть равные котангенсы. Однако возможна и потеря корней, если в интервал изменения углов попадает значение k.
К главе 23
23.6. Способ 1. B тождестве cos (x + T)^2 = cos x^2 удобно выбрать x = 0 и x = 2 T. Вместо второго значения можно выбрать другое иррациональное число.
Способ 2. Если у функции есть период Tr, то x1 + T = xm, x2 + T = xk, где xi– i– й положительный корень функции. Исключив T, получим равенство, которое нужно привести к противоречию.