Технология редакционно-издательского процесса
Шрифт:
Lк – длина кормовой части лодки;
Lпр – расстояние пробега;
lэ – размах элерона;
lск – длина участка скалывания.
Основным материалом для составления индексов являются строчные буквы русского алфавита. Значительно реже применяют–ся буквы латинского алфавита, очень редко – греческие и тем более готические. Довольно часто в индексах используются арабские цифры и математические знаки. По местоположению при буквен–ном обозначении индексы подразделяют на нижние и верхние, причем нижние предпочтительнее. Верхний индекс справа лучше не использовать, так как это место показателя степени. Наиболее
Иногда индексы могут быть расположены вверху слева, если необходимо различить обозначения, имеющие совершенно оди–наковый вид, и если обозначение уже снабжено какими-либо ин–дексами и степенями. Например, имеется обозначение углов по–ворота стержня Q, которые в зависимости от точек приложения силы снабжаются нижними индексами 1, 2, 3, а также штриха–ми ', '', ''' ... – в зависимости от кратности приложения силы (так, Q1' – первое приложение силы в точке 1; Q1'' – второе приложение силы в точке 1 и т.д.). Если нужно выделить еще и угол поворота (слева или справа от узла стержня), применяют левые верхние ин–дексы: – для обозначения угла слева от узла; п – для обозначе–ния угла справа от узла. Таким образом, буквенное обозначение с индексом Q1 – первое приложение силы в точке 1 при левом повороте узла.
Ноль в качестве индекса придает буквенному обозначению значение «расчетный», «начальный», «исходный», относящийся к центру тяжести и т.п., а также может употребляться в значении «стандартное состояние вещества», например, l0 – расчетная дли–на, t0 – начальная температура.
Индексы, состоящие из нескольких слов, сокращают по началь–ным и характерным буквам. При этом, если индекс представляет собой два или три сокращенных слова, после каждого из них, кроме последнего, ставят точку, например Sрв – площадь руля высоты.
Теперь непосредственно о восприятии формул. Принято счи–тать, что хорошо воспринимаемая формула – это такая, которую легко понять и запомнить. Добавим два дополнительных требо–вания.
1. При прочих равных условиях предпочтение следует отдавать таким символам в формулах, которые легко и однозначно воспро–изводятся на письме (от руки). В первую очередь это относится к учебникам, формулы из которых преподаватель пишет на доске, учащийся – в конспекте и т.д. Трудности здесь возникают обычно в связи со сходным начертанием букв разных алфавитов и из-за неоправданной усложненности индексов. Так, Rг.ц легко и запи–сать, и потом прочитать. А теперь попытаемся прочитать запись e.g. Для этой, казалось бы, выразительной записи существуют свыше 100 (!) вариантов прочтения, ибо есть шесть вариантов для с («ро» строчная и прописная; «пэ» строчная и прописная; «эр» строчная и прописная); четыре варианта для е («е» и «эль», на строке и в индексе); шесть вариантов для g («дэ» и «жэ»; на строке, в индексах первой и второй ступени). Кроме того, всю запись можно прочитать и как « логарифмическое».
2. Формула должна иметь хороший графический рисунок. Плохо воспринимаются, например, цифры в середине сомножителей (их лучше ставить спереди), сложные показатели степени и индексы, многоступенчатые индексы, сложные формулы, приведенные к компактному виду.
Особой разновидностью искажений графики, еще больше ухудшающих «внешний вид» формулы, являются нарушения пра–вил набора. Желая упростить его, иногда смещают верхние индексы относительно нижних (Kавткм). Точки в индексах часто оказываются не на месте и выглядят знаком
Из сказанного можно сформулировать рекомендации по улуч–шению воспроизводимости и графики формул.
Что касается главного условия хорошей воспринимаемости формул – облегчения их понимания и запоминания, – необходимо учитывать следующие рекомендации:
– при прочих равных условиях русские символы, являющиеся первой буквой зашифрованного слова, воспринимаются, т.е. по–нимаются и запоминаются, лучше, чем латинские или греческие;
– в качестве символов нежелательно использовать аббревиатуры, так как они воспринимаются как произведение;
– индекс по возможности должен яснее отражать зашифрованное в нем слово или словосочетание;
—легко понимается и запоминается формула, в которой на–глядно отражена зависимость результата вычисления от характера изменения параметров.
Единицы физических величин следует помещать только после подстановки в формулу числовых значений величин и проведения промежуточных вычислений – при получении конечного результа–та. Например:
неправильно:
с = КТм/с = 1,4 · 290 · 300 м/с = 350 м/с;
правильно:
с = КТ = 1,4 · 290 · 300 = 350 м/с.
Математические знаки определяют как символы, служащие для записи математических понятий, предложений и вычислений. Так, «отношение длины окружности к длине ее диаметра» записы–вается в виде знака щ.
Математические знаки подразделяются на три группы:
1) знаки математических объектов (точки, прямые, плоскости) обычно обозначаются соответственно буквами (А, В, С…; а, b, с…; , , ...);
2) знаки операций сложения (+) и вычитания (-); возведения в степень а2 , а3 и т.д.; корня V; знаки тригонометрических функ–ций log, sin, cos, tg и др.; факториала !; дифференциала и интеграла dx, ddx,…, ydx, модуля | х |;
3) знаки отношений (= – равенство, > – больше, < – меньше, || – параллельность, – перпендикулярность, – тождествен–ность, – приблизительное равенство).
Все эти знаки, кроме знаков объектов, применяются только в формулах, использовать их в тексте вместо слов соответствующего значения запрещается. Знаки объектов в тексте могут применяться со словами: в точке А, на плоскости а, из угла х.
Часто после формулы идет экспликация – расшифровка входя–щих в формулу символов. Элементы ее располагаются в той после–довательности, в которой условные обозначения прочитываются в формуле. Одни и те же буквы с разными индексами рекоменду–ется группировать вместе. При расшифровке дробных формульных выражений сначала поясняют буквенные обозначения числителя, а затем знаменателя.
Если необходимо расшифровать значение символа, стоящего в левой части уравнения, это рекомендуется делать в предшествую–щей формуле части предложения. К сожалению, эта рекомендация не всегда выполняется.
Приведем примеры из журнала «Военно-экономический вест–ник» (2002. № 12).
Расчет затрат на перевозки вооружения и техники осуществляются по формуле
Зп.в.т = Вп.в.т x Сп.в.т x Дп (29)