Технология редакционно-издательского процесса
Шрифт:
Из формулы (36) получим, вводя коэффициенты расхода,
Самым спорным вопросом пунктуации в тексте с формулами является постановка двоеточия перед формулой. Двоеточие в рус–ском языке ставится перед однородными членами предложения после обобщающего слова, в бессоюзных сложных предложениях, при прямой речи и использовании
Перед формулой двоеточие может быть поставлено в следующих случаях.
1. Если перед несколькими формулами есть обобщающее сло–во; при отсутствии его двоеточие перед несколькими формулами следует ставить только в тех случаях, когда нужно предупредить читателя, что далее следует перечисление нескольких формул:
Применяя теорему наложения к уравнению (8.32), получим два вида интеграла свертки, или интеграла Дюамеля:
Из уравнения (3) получим:
2. Если формульный текст можно рассматривать как бессоюз–ное сложное предложение, в котором формула, являясь второй частью, либо разъясняет смысл первой части (возможна мыслен–ная постановка слов а именно), либо содержит причину или обо–снование того, о чем говорится в первой части (возможна мыслен–ная постановка слов потому что, так как, поскольку).
Подставим выражение (3.57) в формулу для B0 :
Мы предполагаем, что Сhe, есть линейная функция:
Между формулами принято ставить точку с запятой или запя–тую в зависимости от того, какой знак проводится по всей работе.
В системах уравнений, объединенных парантезами, знаки пре–пинания можно не ставить, рассматривая систему как единый член предложения. Например: Из системы уравнений
можно определить значения постоянных коэффициентов.
Если системой уравнений заканчивается предложение или вслед за системой приводят экспликацию, такую систему рас–сматривают как перечисление формул и отделяют их друг от друга соответствующим знаком.
Иногда две формулы соединяются союзом или. Союз или упо–требляется в русском языке в двух значениях: как разделительный и как уточняющий. Разделительный союз или (одиночный или по–вторяющийся) указывает на необходимость выбора одного из по–нятий, которые выражаются однородными членами и исключают или заменяют друг друга. Перед одиночным разделительным сою–зом или запятая не ставится.
Если союз или имеет уточняющее значение, то запятая перед одиночным союзом ставится обязательно.
Редактору необходимо определить, в каком значении автор употребил союз или между формулами. Иногда нетрудно понять, что вторая формула, присоединенная союзом или, это просто пре–образованная первая формула, и запятая нужна. Так бывает в слу–чаях, когда вместо буквенных обозначений в ту же формулу под–ставляют их числовые значения.
…применим уравнение (2) и после перегруппировки членов полу–чим
Такие конструкции встречаются редко. Поэтому для проверки идентичности формул редактору приходится делать некоторые математические преобразования. Они элементарны (не выходят за пределы курса средней школы) и под силу любому редактору. Рассмотрим несколько примеров.
Из курса тригонометрии известно, что 2 sin 2 cos 2 – это фор–мула двойного угла синуса, т.е. 2 sin 2 cos 2 = sin 22. Следователь–но, во второй формуле 2 sin 2 cos 2 заменено на sin 22, значит, формулы идентичны и запятую нужно ставить обязательно.
Здесь правая часть первого уравнения сокращена на cos 2. Формулы тоже идентичны, и запятая нужна.
Постановка запятой перед союзом или в данном случае не тре–бует пояснений.
В этой связи рассмотрим рекомендации для «обработки мате–матического текста, в частности формул, позволяющей без ущер–ба для содержания и усвоения материала добиться либо сокраще–ния числа формул, либо упрощения их написания, уменьшения площади, занимаемой ими в книге».
Рекомендация следующая.
Иногда бывает необходимо выделить целый ряд формул, по–следовательно получающихся в результате математических преоб–разований, характер которых ясен читателю без дополнительных пояснений. Как правило, все такие формулы выключают посере–дине формата полосы, а сами формулы соединяют словами или, т.е., откуда и т.п., каждая из которых занимает отдельную строку. Однако тот же текст займет гораздо меньшую площадь, если убрать соединительные слова (заменить их точкой с запятой) и располо–жить формулы более компактно.
Например:
Располагая формулы в подбор, мы, естественно, экономим бу–магу. Но автор предлагает вместе с тем убрать уточняющие союзы и слова, а формулы друг от друга отделить точкой с запятой, на–рушая этим математический смысл. В первом примере мы имеем дело с преобразованием одной формулы в другой вид, т.е. послед–няя формула получена путем последовательных преобразований первой. Во втором же примере знак точка с запятой говорит о том, что перед нами несколько самостоятельных формул, не связанных по смыслу с другими формулами. Как видим, рекомендация автора привела к ошибке.
После формулы должен стоять тот знак препинания, который необходим по смыслу.
Существуют ограничения в применении некоторых знаков пре–пинания. Непосредственно к формулам, условным буквенным обо–значениям, символам, математическим терминам, обозначениям единиц измерения и т.п. не могут примыкать знаки препинания, применяемые в качестве математических знаков или похожие на них.
Так, тире (—) совпадает по написанию с математическим знаком операции вычитания (-), двоеточие (:) – со знаком деления (:), восклицательный знак (!) – со знаком факториала (!).