Чтение онлайн

на главную - закладки

Жанры

Технология редакционно-издательского процесса

Рябинина Нина Захаровна

Шрифт:

(a1x + b1x2 + ... + nxn)1/2.

Знаки, на которых делают перенос, ставят два раза: в конце первой строки и в начале перенесенной части. Например:

Если формулу прерывают на отточии, его также повторяют в начале следующей строки. Если знак равенства стоит перед зна–ком минус, перенос делают

на знаке равенства. Если формула имеет в своем составе несколько выражений в скобках, перенос рекомендуется делать на знаке + или –, стоящем перед скобками.

Несмотря на все старания редакторов и корректоров, погреш–ности в тексте с формулами все же остаются. Типичная ошибка при переносе формул – отрыв аргумента от функции. Например:

Конечно, нельзя требовать от наборщика, чтобы он дифферен–цированно оценивал запись типа f(x – y): без контекста невозможно сказать, что она означает: произведение двух функций f и (х – у) или зависимость функции f от аргумента (х – у). Однако известно, что тригонометрические функции без аргумента не имеют смысла, поэтому без них не употребляются. И помещать знак умножения между функцией и ее аргументом – грубейшая ошибка.

В приведенном примере редактор не мог предусмотреть допу–щенных ошибок. В первом случае перенос формулы вызван недо–смотром наборщика при разбивке ее на две строки, во втором формула была в самом тексте, и предвидеть ее перенос в этом месте при редактировании было практически невозможно. Но в верстке редактор обязан был исправить эту ошибку.

Емкость печатного листа с формулами в 2—3 раза меньше емкости печатного листа текста, что увеличивает себестоимость издания. Издательская практика располагает рациональными приемами по–дачи формул, дающими ощутимый экономический эффект. Фор–мулы, как правило, набирают в красную строку с отбивкой сверху и снизу. Это ведет к увеличению расхода бумаги, удорожанию на–бора и монтажа формул.

Выключка формул посередине формата целесообразна в двух случаях: а) формула нуждается в акценте; б) из-за сложности и громоздкости формула не может быть набрана вместе с текстом. Формулы, на которые необходимо обратить внимание, как прави–ло, нумеруются. Однако часто формулы выключают без всякой необходимости.

Например, текст

вполне можно разместить в одной строке.

Существенного уплотнения набора можно добиться и тогда, когда этому, казалось бы, препятствует нумерация формул. На–пример:

При таком расположении формул найти ее номер не составляет труда.

Иногда авторы помещают одну под другой несколько однотип–ных формул, каждой давая номер.

В подобном случае все формулы можно поместить в одной строке под одним номером:

Изменение ссылок на них не вызывает затруднений. Если, на–пример, нужно сослаться на формулу для выражения координаты, можно написать: «по второй из формул (3)».

Методы преобразования, заложенные в природе самой форму–лы, позволяют практически любую формулу любой сложности представить в виде, удобном для набора. Простейшая дробь

оказывается

неудобной для набора. Но ее можно записать или через косую черту 1/2, или десятичной дробью 0,5, или в виде степени 2– 1 . Все варианты равноправны, однако наибольшее распростра–нение получил первый.

Считается, что в изданиях произведений научной литературы можно любые дроби преобразовать в однострочные выражения типа: (а + в)/с; (А + В)/(с + d) и т.д. Здесь явная выгода в расходе бумаги. Особенно целесообразно преобразование многоэтажных дробей. Например, дробь

можно преобразовать в вид (a/b + c/d)/(e/f + g/h)– 1 .

В целях экономии бумаги такой ее компактности уделяется большое внимание. Однако здесь не обошлось без перебора: в пе–чати стали появляться огромные невоспринимаемые формулы и формулы двусмысленного толкования.

Невоспринимаемые формулы – результат порой бездумного перевода сложных двух– и трехэтажных формул в однострочные с помощью знака «косая черта» и отрицательных показателей сте–пеней.

Формулы двусмысленного толкования получаются в тех случа–ях, когда в знаменателе после косой черты оказывается произве–дение.

Яркий пример неосторожного обращения со знаком «косая черта» – в приложении 1 к ОСТу 29.115—88 «Оригиналы автор–ские и текстовые издательские. Общие технические требования». Авторы стандарта считают возможным формулу

преобразовать так:

Это неверно, ибо становится непонятным, какие символы на–ходятся в числителе, а какие – в знаменателе. Если эту неодно–значность устранить (с помощью дополнительных скобок), фор–мула получится еще менее воспринимаемой. Такой вариант станет, может быть, пригодным лишь для какого-то особого компактного издания, в котором формула дается лишь для того, чтобы, не заду–мываясь над ее смыслом, подставить цифры и получить результат.

Рассмотрим еще один «учебный» пример:

Если просто заменить горизонтальную дробную черту на косую, получим

А = В/СХ и А = В/СХ,

т.е. разные формулы стали одинаковыми.

Чтобы такого не произошло, в первой формуле надо произве–дение в знаменателе поставить в скобках, а во второй перенести X вперед или В/С записать в скобках:

А = В/(СХ) и А = XB/C = (B/С) X.

Многие считают, что вторую формулу в варианте А = В/ СХ можно оставить без изменения, ибо по правилам арифметики здесь дей–ствия будут выполняться в порядке расположения знаков. С этим нельзя согласиться, поскольку в технической литературе издавна сложился стереотип восприятия выражения за косой чертой как единого целого. Например, удельный расход топлива всегда обо–значали так: г/кВтч, где «ч (ас)» на самом деле находится в знаме–нателе, хотя по правилам арифметики он стоит в числителе.

Если в выражении А = В/ СХ косую черту заменить знаком деле–ния (две точки), это тоже нехорошо, ибо С и Xбудут набраны без пробела и многими будут приняты за произведение (А = В : СХ).

Как и было условлено, в трудоемкость формул (экономич–ность) будем включать трудоемкость не только набора, но и редак–тирования, перепечатки формульного оригинала, считки. Спра–ведливости ради сюда следовало бы включить и трудоемкость проверки формул автором в верстке, когда ему приходится порой часами проверять формулы, ставшие неузнаваемыми после редак–тирования. Очевидно, например, насколько труднее проверить вторую формулу, чем первую:

Поделиться:
Популярные книги

Дракон с подарком

Суббота Светлана
3. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
6.62
рейтинг книги
Дракон с подарком

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Ты - наша

Зайцева Мария
1. Наша
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Ты - наша

Игра Кота 2

Прокофьев Роман Юрьевич
2. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
рпг
7.70
рейтинг книги
Игра Кота 2

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Все повести и рассказы Клиффорда Саймака в одной книге

Саймак Клиффорд Дональд
1. Собрание сочинений Клиффорда Саймака в двух томах
Фантастика:
фэнтези
научная фантастика
5.00
рейтинг книги
Все повести и рассказы Клиффорда Саймака в одной книге

Душелов. Том 2

Faded Emory
2. Внутренние демоны
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Душелов. Том 2

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Невеста инопланетянина

Дроздов Анатолий Федорович
2. Зубных дел мастер
Фантастика:
космическая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Невеста инопланетянина

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Коллектив авторов
Warhammer Fantasy Battles
Фантастика:
фэнтези
5.00
рейтинг книги
Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Печать пожирателя 2

Соломенный Илья
2. Пожиратель
Фантастика:
городское фэнтези
попаданцы
аниме
сказочная фантастика
5.00
рейтинг книги
Печать пожирателя 2

Завод: назад в СССР

Гуров Валерий Александрович
1. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод: назад в СССР

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4