Технология редакционно-издательского процесса
Шрифт:
рхx = -р + div + 21;
рyy = -р + div + 22;
рzz = -р + div + 23;
или по величине, которая является основой сравнения:
0° <= <=30°;
150°<= <=210°;
330° <= <=360°.
Если производится преобразование формулы, а сама формула многострочная, промежуточные группы должны быть размещены одна под другой, чтобы лучше был виден ход преобразований.
Нумерация формул. Очень часто оперировать формулами при–ходится не только там, где они расположены, но и в предыдущем или в последующем изложении. Чтобы каждый раз, ссылаясь на формулу, не приводить ее полностью, формулы нумеруют. Обычно применяется сквозная нумерация ограниченного числа наиболее важных формул. Нумерация всех формул подряд загромождает книгу.
В больших работах (учебники, монографии) иногда применя–ется порядковая нумерация формул по главам, так называемая двойная нумерация. В этом случае первая цифра нумерованной формулы должна соответствовать номеру главы, вторая – поряд–ковому номеру формулы внутри главы, например: 12-я по порядку формула в главе 2 нумеруется (2.12), 5-я формула в главе 3 – (3.5) и т.д. В исключительных случаях, когда очередная формула явля–ется разновидностью приведенной ранее основной, допускается литерная нумерация формул арабской цифрой и строчной прямой буквой русского алфавита. Цифру и букву пишут слитно и не от–деляют запятой, например: 17а, 17б и т.д.
Порядковые номера всех формул должны быть написаны араб–скими цифрами в круглых скобках (римские цифры для нумерации формул не применяют) у правого края страницы без отточия от формулы к ее номеру.
В тексте ссылку на порядковый номер формулы также указы–вают в круглых скобках. Например:
в формуле (4.15) приведены…
В случае нумерации группы формул или системы уравнений одним порядковым номером этот номер, заключенный в круглые скобки, ставят на уровне середины объединенной группы формул или системы уравнений у правого края страницы. В этом случае применяют парантез (фигурная скобка).
Порядковый номер формулы при переносе ставят у последней строки. Например:
Проинтегрировав уравнение (2.17) один раз, получим
Знак умножения в формулах. Коэффициенты и символы в фор–мулах, как правило, не разделяют никакими знаками, а пишут слитно. Точка как знак умножения на среднюю линию не ставится перед буквенными символами и между ними, перед скобками и между сомножителями в скобках, перед дробными выражениями, написанными через горизонтальную черту, и после нее. Например:
Точка на среднюю линию как знак умножения ставится только в исключительных случаях:
– между числовыми сомножителями: 18 · 242,5 · 8;
– когда вслед за аргументом тригонометрической функции стоит буквенное обозначение: Jtg в · a sin б;
– для отделения сомножителей от выражений, относящихся
к знакам радикала, интеграла, логарифма и т.п.:
Вообще же выражение cos t · ту или
обычно пред–ставляют в виде ту cos t или
,
Косой крест (x) как знак умножения применяется в формулах:
– при указании размеров: площадь комнаты 4 x 3 м;
– при записи векторного произведения векторов: а x b;
– при переносе формулы с одной строки на другую на знаке умножения.
Перенос формул. Если приводимая в рукописи формула на–столько длинна, что не помещается в одной строке на странице издания (без переноса), обычно требуют, чтобы автор наметил возможные места переноса. Предпочтительнее перенос делать в первую очередь на знаках математических соотношений: = /=, , ,<=, >=, >, <, >> и т.д.
Если на этих знаках разделить формулу на строки не удается, ее следует делить на знаках операций + или —. Менее желательно, хотя и допустимо, деление формул на строки на знаках ± и умно–жения. Не принято делить строку на знаке деления (две точки). Если формулу делят на знаке умножения, его показывают не точ–кой, а косым крестом (x).
Особенно внимательно подходят к вопросу о переносе уравне–ний, правая или левая часть которых представлена в виде дробей с длинными числителями и знаменателями или с громоздкими подкоренными выражениями. Такие уравнения необходимо пре–образовывать, приводя их к виду, удобному для переноса.
Дроби с длинным числителем и коротким знаменателем целе–сообразно представлять так, чтобы числитель был записан в виде многочлена в скобках, а единица, деленная на знаменатель, вы–несена за скобки. Например, уравнение
легко приводится к виду
При коротком числителе и длинном знаменателе рекомендуется заменять отдельные сложные элементы упрощенными обозначе–ниями. Например: вместо
надо
Если в формулу входит дробь с длинным числителем и длин–ным знаменателем, то для переноса либо используют оба реко–мендованных приема преобразования, либо заменяют горизон–тальную дробную черту знаком деления (две точки). В последнем случае формула будет иметь вид
(a1x + a2y + ... + aih) : (b1x + b2y + ... + bih).
Подкоренное выражение рекомендуется преобразовать путем возведения его в степень 1/и. Например, формулу
можно записать так: