Чтение онлайн

на главную - закладки

Жанры

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
Шрифт:

а) Метод найменших квадратів.

Відомі спостереження в точках f(0)=4sin(0) =0, f(1)=4sin(3)=0.5644798, f(2)=4sin(6)=–1.1176616, f(3)=4sin(9)=1.6484734, рівняння розв’язується за умови, що вхідним впливом є функція

f( t) =P 3( t) =a 0 +a 1 t+a 2 t 2 +a 3 t 3

інтерполяційний многочлен третього степеня. Функцію P 3( t) знаходимо за методом найменших квадратів.

б) Кусково-лінійна апроксимація.

Розв’яжемо рівняння (1), у випадку, коли вхідний сигнал задається кусково-лінійною функцією f( t) =x 4( t):

в) Наближення інтерполяційними сплайнами.

Розв’яжемо рівняння (2), у випадку, коли вхідний сигнал задається сплайн-функцією f( t)= x 3( t), тобто кубічним сплайном .

Завдання для самостійної роботи

Використати інші із розглянутих методів розв’язання диференціального рівняння з правою частиною (сплайн-функції).

Поява сучасних комп’ютерів та математичних комп’ютерних систем створили умови для використання у навчальному процесі більшої кількості наближених методів та ознайомлення студентів із сучасними наближеними аналітичними методами розв’язування ДР, зокрема, методом відомого українського математика Дзядика В.К. (1919-1998).

Метод дає можливість на заданому проміжку будувати многочлени, які з високою точністю наближають шуканий розв’язок, особливо у випадку, коли коефіцієнтами лінійного диференціального рівняння (ДР) є многочлени. Розглянемо застосування методу на прикладі деяких класів ДР.

Без використання математичних комп’ютерних систем типу Mathematicа завершити обчислення можна лише в найпростіших випадках. Використаємо пакет Mathematicа 4.0 при розв’язуванні задачі Коші [4]. Якщо розв’язується задача

y''+3 y'+5 y=–x 3 +2 x 2, y(0)=1, y'(0)=–1, (3)

наближений розв’язок рівняння шукаємо у вигляді многочлена, наприклад, четвертого степеня. Розв’язок має вигляд

Нижче наведено графіки відхилення та відносної похибки точного і наближеного розв’язків рівняння (3).

Наближений розв’язок рівняння Бесселя у вигляді степеневого ряду знаходиться за допомогою системи Mapleтак. Програма мовою системи має вигляд.

Order:=10:dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)*x+(x^2-1)*y(x)=0,y(x),series);

Наближення загального розв’язку система записує таким чином

Проте загальний розв’язок система повертає і у звичній формі:

dsolve(x^2*diff(y(x),x$2)+diff(y(x),x)*x+(x^2-k^2)*y(x)=0,y(x));

Як ми уже бачили, моделі деяких процесів описуються нелінійними диференціальними рівняннями. Особливо це стосується дослідження систем автоматичного управління, які описуються нелінійними математичними моделями. Тому для одержання характеристик динамічної системи часто перетворюють рівняння. Одним із методів перетворення рівнянь є метод лінеаризації.

Він полягає у послідовному перетворенні нелінійного рівняння, в результаті чого одержується лінійне рівняння, яке відповідає заданому нелінійному. Розглядають повну лінеаризацію, коли рівняння зводиться до такого, в якому міститься менша кількість нелінійностей або спрощені нелінійності – наприклад, коли функція y=e х заміняється першими членами ряду Тейлора 1 +x+0.5 x 2.

Приклад . Знайти методом лінеаризації наближений розв’язок системи ДР, яка є варіантом моделі розвитку популяції

де x( t), y( t) – кількість жертв та хижаків, >0, <0, <0, >0.

Початкові умови x(0) =x 0, y(0) =y 0.

Замінимо нелінійну задачу лінійною в околі стаціонарної точки, де dx/dt=0, dy/dt=0. Це точка з координатами x s =–/і

y s =–/. Праві частини рівнянь системи подамо у вигляді формули Тейлора в околі стаціонарної точки M( x s , y s ), обмежившись лінійними членами.

f( x, y) =f( M) +df/dx( M)( x–x s ) +df/dy( M)( y–y s ) +...

Тоді x+xy=x s ( y–y s ), y+xy=y s ( x–x s ), а лінеаризована система набуває вигляду

Можна зробити висновок про те, що поведінка розв’язку заданої системи у певному розумінні близька до розв’язку лінеаризованої системи ДР і, що на основі цього можна робити певні висновки та припущення щодо досліджуваного процесу. Наприклад, що фазові траєкторії в околі стаціонарної (особливої) точки є концентричними, що коливання в системі «хижак–жертва» є нестійкими.

Розглянута методика проведення заняття демонструє студентам доцільність використовування комп’ютерів з метою ефективнішого засвоєння матеріалу; сприяє формуванню у студентів навичок використання пакетів, вмінь правильно аналізувати практичні задачі; переконує студента у необхідності оволодіння теоретичними знаннями; студенти набувають досвід використання таких методів наукового пізнання, як аналіз, порівняння, узагальнення та інше; активізує навчально-пізнавальну діяльність студентів.

Поделиться:
Популярные книги

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Сколько стоит любовь

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.22
рейтинг книги
Сколько стоит любовь

Невольница князя

Мун Эми
Любовные романы:
эро литература
5.00
рейтинг книги
Невольница князя

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Князь

Шмаков Алексей Семенович
5. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
5.00
рейтинг книги
Князь

Старое поместье Батлера

Лин Айлин
Фантастика:
историческое фэнтези
5.00
рейтинг книги
Старое поместье Батлера

Чужбина

Седой Василий
2. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чужбина

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце

Вторая жизнь Арсения Коренева книга третья

Марченко Геннадий Борисович
3. Вторая жизнь Арсения Коренева
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вторая жизнь Арсения Коренева книга третья

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Развод с миллиардером

Вильде Арина
1. Золушка и миллиардер
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Развод с миллиардером

Лучший из худших-2

Дашко Дмитрий Николаевич
2. Лучший из худших
Фантастика:
фэнтези
5.00
рейтинг книги
Лучший из худших-2