Веревка вокруг Земли и другие сюрпризы науки
Шрифт:
Вы спросите, как трактовать этот расклад, слегка перекошенный в сторону орлов: вышло ли это случайно или монетка была жульническая?
Тест хи-квадрат заключается в вычитании ожидаемого результата, ОР, из фактического, ФР, возведения полученной разности в квадрат (умножения ее на себя) и деления на ОР. Такая операция проделывается и с орлами, и с решками, а результаты складываются. В нашем случае хи-квадрат таков: (53–50) 2/50 + (47–50) 2/50 = 9/50 + 9/50 = 0,36. Существует специальная таблица хи-квадратов. Используя ее, вы можете найти там это значение и определить, укладывается ли оно в рамки нормы, то есть понять, насколько оно согласуется с результатом, который мог бы получиться при случайном подбрасывании монетки. В данном случае согласуется. Таблица показывает нам, что такой результат получается примерно в 55 случаях из ста, что вполне обычно.
Теперь допустим, к примеру,
Наблюдения в Гастингсе существенно отличаются от данных в целом по стране — главным образом, за счет того, что раньше на этой территории видели гораздо больше редких видов, чем сейчас. Но если все эти свидетельства подлинны и прежняя небывалая частота объясняется наличием чрезвычайно искусных наблюдателей, или охотников, или и тех и других, то общая картина открытий в Гастингсе — количество птиц каждого вида, времена года, в которые было замечено больше птиц и так далее, — должна напоминать раскладку по другим уголкам страны, несмотря на то что количество случаев в Гастингсе выше. И напротив, если свидетельства о редких птицах фальшивы и не имеют ничего общего с теми видами, которые на самом деле бороздят небо над Гастингсом, то картинка будет абсолютно другая. Статистик, работавший в сотрудничестве с орнитологами из журнала «Британские птицы», собрал информацию по трем районам и двум периодам. Он просмотрел отчеты о трех разновидностях редких птиц (класс 1, класс 2 и класс 3), виденных в каждом из районов, а затем внес в одну строку таблицы показатели по каждой разновидности в Гастингсе, а во вторую — совокупные показатели по двум остальным районам. Вот что у него получилось:
Класс 1 | Класс 2 | Класс 3 | Сумма | |
Гастингс | 243 | 208 | 165 | 516 |
Остальное | 125 | 119 | 255 | 499 |
Одного взгляда на цифры достаточно, чтобы убедиться: картина странная. Видов класса 1 в Гастингсе почему-то замечено вдвое больше, чем во всей остальной Великобритании. И наоборот, видов класса 3 в Гастингсе намного меньше.
А окончательно все прояснил простой хи-квадрат. Как мы видели в примере с орлянкой, значение хи-квадрата, равное четырем, означает, что только в четырех случаях из ста такой результат мог выпасть случайным образом. Если обратиться к «редким видам Гастингса», то хи-квадратный тест выдает куда больший и, таким образом, куда менее вероятный результат — 57,40, исключая всякую возможность того, что поступившие к орнитологам отчеты были получены в ходе обычного процесса наблюдения. Итак, опасения орнитологов насчет «опасной близости от грани скептицизма» полностью подтвердились.
Джордж Бристоу брал всех на пушку — можно ведь выразиться и так — всю оставшуюся жизнь (он умер в 1947 году в возрасте 84 лет), но важно другое: как только британское орнитологическое сообщество поставило его отчеты под вопрос и перестало учитывать их в статистике, редких птиц, якобы порхавших в небе Гастингса в начале XX века, сильно поубавилось — примерно до тех показателей, которые отмечались в остальной части страны.
Так что же происходило на самом деле? Явных доказательств пока нет, однако в журнале «Британские птицы» промелькнула гипотеза, что Бристоу состоял в сговоре с моряками, которые регулярно наведывались в ближайший порт. Те по его заказу охотились на птиц в других странах, складывали тушки в самом холодном месте на корабле, а потом привозили их Бристоу. А он давал за птиц хорошую цену, изготавливал из них чучела, отправлял один экземпляр вместе с отчетом в «Справочник-определитель британских птиц», а остальные чучела сбывал коллекционерам редких птиц. Ясное дело, пернатая особь, типичная для Северной Африки, в небе над Гастингсом сразу превращается в чрезвычайно редкую птицу, таким образом Бристоу, сообщая о птицах, как якобы увиденных и подстреленных в Англии, мог впоследствии спокойно продавать их коллекционерам втридорога.
Если бы можно было опоясать всю Землю веревкой так, чтобы она проходила непосредственно по линии экватора, то насколько потребовалось бы удлинить веревку, пожелай мы приподнять ее на метр над поверхностью планеты?
Первое, что приходит в голову: чтобы приподнять веревку на всем протяжении на метр, нужно проделать кое-какие расчеты с использованием изначальной длины веревки, то есть
Поиск ответа сводится к нахождению разницы между длинами двух окружностей: окружности с диаметром как у Земли и окружности с диаметром на два метра больше, чем у Земли (по метру с каждой стороны). Назовем первую величину ОЗ, а вторую ОЗ+. Теперь осталось выяснить еще одну вещь. Длина любой окружности равна ее диаметру, умноженному на постоянное число (см. главу « = 3»), которое примерно составляет 3,14. Итак, можно сказать, что ОЗ = 3,14xДЗ, а ОЗ+ = 3,14 x (ДЗ + 2), где ДЗ — диаметр Земли. Чтобы узнать дополнительную длину веревки, нужно вычесть ОЗ из ОЗ+. То есть вычесть 3,14 x ДЗ из 3,14 x (ДЗ + 2). Раскроем во втором выражении скобки и преобразуем его: 3,14 x ДЗ + 3,14 x 2. Из этой записи очевидно, что правильный ответ:
Дополнительная длина веревки = 3,14 x ДЗ + 3,14 x 2 - 3,14 x ДЗ.
Или, если переставить местами:3,14 xДЗ - 3,14 xДЗ + 3,14x2. Разумеется, эти вычисления далеки от тех, какими занимается Стивен Хокинг [20] , но сделаем скидку на то, что большинству из нас не каждый день приходится жонглировать плюсами, минусами, скобками и знаками равенства. Даже из таких примитивных расчетов явно следует, что длина веревки вырастет не на сотни километров и даже не на один километр, а всего на два раза по 3,14 метра.
20
Стивен Хокинг (р. 1942) — знаменитый английский астрофизик, профессор гравитационной физики, профессор математики. Несмотря на тяжелую болезнь, вызвавшую почти полный паралич, продолжает работать. Автор научно-популярной книги «Краткая история времени». Обладатель многочисленных наград за вклад в науку. ( Прим. перев.).
Поскольку реальная длина веревки в наших расчетах не фигурировала, можно сделать вывод: чтобы диаметр любого веревочного круга любогоразмера вырос на 1 м, надо удлинить веревку всего на 3,14 м. Возьмете ли вы веревку, натянутую вокруг основания купола лондонского собора Святого Павла (110 метров), или веревку, проходящую по орбите Юпитера (около 5 миллиардов километров), надставить ее придется на одни и те же 3,14 метра.
Вы не поверите, но австрийский композитор и педагог Иоганн Гуммель и его учитель, великий Вольфганг Амадей Моцарт, сами того не зная, занимались теорией вероятности — они сочиняли музыкальные пьесы, чей окончательный вид определялся броском костей.
В 1793 году, спустя два года после смерти наставника, Гуммель издал таблицу музыкальных тактов, которую, по его словам, составил сам Моцарт с целью создать невероятно большое количество вариантов «Вальса для двух игральных костей» — причем с участием публики. Таблица состояла из 171 такта, разделенных на 16 групп по 11 тактов. Каждая из шестнадцати групп предусматривала 11 вариантов развития. Зрители должны были бросать две игральные кости и, в зависимости от выпавших чисел (от 2 до 12), составлять последовательность номеров, определявших, какой вариант каждого такта нужно играть. Скажем, если на костях последовательно выпадало 3, 8, 9, 6, 3, 4, 2, 7, 5, 8, 8,12,10, 4, 7, 6, то, вычтя из каждого числа по единице (потому что бросок двух костей никогда не даст в сумме номер 1), музыканты исполняли вальс, играя второй вариант такта 1, седьмой вариант такта 2 и далее по тому же принципу. Таким образом, каждое исполнение пьесы становилось уникальным и неповторимым. При бросках двух костей скомбинировать числа от 1 до 11 (или от 2 до 12) можно 759 499 667 966 482 способами, так что вероятность исполнить именно тот один из сотен триллионов вариант, который публика уже слышала, ничтожно мала. А на то, чтобы сыграть все возможные варианты, потребовалось бы более 500 миллионов лет.
Кстати, если вы полагаете, будто Моцарта звали просто Вольфганг Амадей, то, может быть, вы удивитесь, узнав, что это не совсем так. Когда о фантастическом таланте восьмилетнего Моцарта узнал весь мир, некий Дайне Баррингтон, эрудит и антиквар, человек строгий и требовательный, подверг мальчика серьезному экзамену в Лондоне, из которого юный гений вышел, конечно же, победителем. Баррингтон опубликовал результаты своих исследований — эта книга вышла в свет в Лондоне и была снабжена портретом мальчика с подписью: «Теофил Моцарт». Более того, найден лишь один прижизненный документ, где упоминалось бы имя Моцарта Амадей — латинизированная версия греческого Теофила. А при крещении ему дали имя Иоганн Хризостом Вольфганг Теофил, без всяких там Амадеев.