Чтение онлайн

на главную - закладки

Жанры

Временн?я структура биосистем и биологическое время
Шрифт:

Частичное использование диссипатированной энергии в качестве энтальпии для жизнедеятельности организма является одним из конкретных механизмов сопряжения термодинамически необратимых процессов, протекающих с возрастанием энтропии, и частично обратимых, реализуемых при относительно постоянном ее значении в условиях гомеостазиса. По мнению В. А. Опритова (2000) такое сопряжение является одним из «изобретений» живых организмов, позволяющих обойти «запрет» второго начала термодинамики на самопроизвольное снижение уровня энтропии. На примере известного феномена сопряжения процессов окисления с фосфорилированием у растений при фотосинтезе автор подчеркивает, что для такого сопряжения необходимо соблюдение двух условий: 1) сопрягаемые процессы должны различаться по уровню энергии, чтобы энергия могла перейти от одного процесса к другому; 2) процессы должны иметь общий компонент (-ы) (химический или структурный). Первое условие основано на том, что необратимые процессы, характерные для неустойчивых открытых систем, служат донором энергии для процессов обратимых, свойственных открытым системам в состоянии, близком к стационарному. Примеры

подобного сопряжения многочисленны на всех структурных уровнях организма животных и человека – от молекулярного до системного. На уровне целостного организма в этом плане интересно сопоставление состояния гомеостазиса или относительного постоянства внутренней среды и реакции на воздействие стресс-фактора (Чернышева, 2003; Чернышева, Ноздрачев, 2006).

Состояние гомеостазиса можно рассматривать как условный аналог стационарного состояния, описанного для открытых неустойчивых механических систем как «норма хаотичности» (Климонтович, 1996; Линг, 2008). Оно характеризуется варьированием основных параметров жизнедеятельности (температуры, содержания сахара в крови, уровня тревожности и т. п.) в границах их оптимальных значений. Эти границы определяются геномом данного организма и, в свою очередь, обусловливают возможности адаптации организма к воздействиям окружающей среды. Адаптивность врожденных и выученных реакций позволяет сдерживать рост обобщенной энтропии организма на оптимально стабильном уровне. Так, при повторном воздействии на организм какого-либо фактора окружающей среды из памяти извлекаются наиболее адаптивные к нему реакции без дополнительных затрат энергии на их формирование. Это способствует сохранению относительно стабильного уровня гомеостазиса организма и оптимально минимальной скорости роста уровня энтропии. Следовательно, врожденную («геномную») память, характерную для живых организмов, а также память, формируемую индивидуально в процессе обучения, можно рассматривать как механизмы, обеспечивающие возможность относительно обратимых процессов (например, извлечения из памяти адаптивных реакций) и их сопряжения с относительно необратимыми (в силу роста энтропии) метаболическими, висцеральными и двигательными реакциями.

Адаптивность реакций живого организма на воздействия обусловливает целостность его структур и способствует увеличению продолжительности жизни. Воздействие экзо- или эндогенных стресс-факторов и формирование и реализация ответных адаптивных реакций, требующие затрат энергии, нарушают гомеостазис организма, повышая его термодинамическую неустойчивость. Это проявляется в характерной для стресс-реакции активации нервной, эндокринной и висцеральных систем организма, повышении уровня обмена веществ и энергии. Регистрируемые при этом повышение температуры тела, рост возбудимости нервной системы и эмоциональные реакции свидетельствуют о росте уровня обобщенной энтропии. Следовательно, термодинамический аспект стресс – ответа организма отражает его соответствие состоянию открытой системы с повышенной неустойчивостью, выполняющего функцию энергетического донора прежде всего для механизмов восстановления гомеостазиса. Это соответствует представлениям творца теории стресса Г. Селье (1960) о необходимости стресса (эустресса – стресса без патологий) для поддержания жизнедеятельности биосистем и, с другой стороны, созвучно представлению В. И. Вернадского (1989): эволюция биосферы «питается энтропией» Соотношение относительно обратимых и необратимых процессов, относительно стационарных и неустойчивых состояний при гомеостазисе и стрессе представлено в таблице I. Эти термодинамически различные процессы/состояния несомненно сопряжены не только структурно, через общие жидкостные среды и физиологические системы, но и функционально. Характерно, что в состоянии, близком к максимально неустойчивому, при стресс-ответе, активируются механизмы структурирования потоков энергии, наиболее наглядные в нервной системе.

Так, диффузная активация структур центральной нервной системы при стрессе обусловлена их связями с ретикулярной (сетчатой) формацией ствола головного мозга. Ее можно рассматривать как систему первичной структуризации энергии, выделяемой в процессе обработки информации, и, тем самым, – как механизм предупреждения дальнейшего роста энтропии. Возможно, это наиболее древняя функция нервной системы, так как в эволюции, впервые возникнув у кишечнополостных (Hydroidea), она имеет сетчатую структуру, подобно ретикулярной формации мозга позвоночных. Модельные эксперименты, проведенные на гидрах с фармакологически выключенной нервной системой, показали, что функции других систем сохраняются относительно постоянными, но укорачивается продолжительность жизни животных, что может быть следствием ускоренного роста уровня обобщенной энтропии.

В эволюции нервной системы прослеживается усиление роли и другого фактора снижения энтропии, – развития тормозных систем и увеличения разнообразия тормозных медиаторов, выделяемых нейронами и глиоцитами. На активную роль торможения в организации живого организма как биосистемы, особенно в связи с концентрацией внимания, формированием доминанты, впервые указал А. А. Ухтомский (Ухтомский, 1966).

Еще одним механизмом снижения обобщенной энтропии в живых организмах является асимметрия (Чернышева, 2003). Хотя структурно-функциональная асимметрия является одним из характерных свойств многоклеточных, но ее энергетическая «выгодность» по сравнению с симметрией была показана и на атомарном уровне (Мoller e.a., 2002): при асимметричном делении лучом лазера ядер гелия и фермия энергетический порог ниже, а суммарная кинетическая энергия осколков ядер выше, чем при симметричном.

Таблица 1.

Сравнительная термодинамическая характеристика функциональных состояний гомеостазиса и стресс-ответа организма (по: Чернышева, Ноздрачев, 2006)

 В

живых организмах асимметрия как феномен обладает уникальными свойствами. С одной стороны, она повышает неустойчивость организма и, следовательно, его энергетический потенциал, способствуя увеличению скорости обмена веществ и уровня энтропии, росту возбудимости и, сопряженно, – увеличению сенсорной чувствительности и объема воспринимаемой информации. Последнее, с другой стороны, определяет вклад асимметрии в сдерживание роста обобщенной энтропии. Этому способствуют и проявления морфо-функциональной асимметрии, описанные для парных структур. Например, меж-полушарная асимметрия головного мозга животных и человека (Сhernysheva, 2006; Nikolaeva, Leutin, 2011) заключается в различии не только ряда функций двух полушарий, но и уровня обмена веществ и обобщенной энтропии. Так, правое полушарие обладает более высоким уровнем обмена веществ и энергии, обобщенной энтропии, тогда как левое – более низким (Gur et al., 2002; Andrew, 2002; Чернышева, 2003). Взаимосодействие парных структур направлено на снижение энергозатрат как «цены адаптации».

Взаимосвязь асимметрии с регуляцией уровня энергообмена организма подчеркивает усиление ее при стрессе. О важности феномена свидетельствует также эволюция проявлений морфо-функциональной асимметрии на всех уровнях организации живого. Примером может служить быстрый переход в эволюции плана тела животных от пятилучевой симметрии к трехосевой асимметрии, что отражает процесс адаптации плана тела живых организмов к трехмерному окружающему пространству.

Итак, перечислим кратко свойства живых организмов, позволяющие снижать рост обобщенной энтропии вопреки второму началу термодинамики. Среди них: сопряжение обратимых и необратимых процессов, структурная и функциональная организация потоков энергии, эндогенные источники энергии и информации, память, концентрация внимания, доминанта, торможение, асимметрия, способность регулировать гомеостазис и степень «открытости» организма как неустойчивой термодинамической системы во взаимодействии с окружающей средой. Эти свойства позволяют поддерживать достаточно низкую скорость роста энтропии, а также быть относительно независимыми от окружающей среды. Можно предположить, что термодинамическая «пластичность» и разнообразие путей «обхода» запрета второго начала термодинамики живыми организмами являются весомыми факторами, определяющими специфику живого (Чернышева, Ноздрачев, 2006). Кроме того, процессы жизнеобеспечения, связанные с делением, ростом и дифференцировкой клеток, метаморфозами и регенерацией, движением и поведением, не приводят к «тепловой смерти», но сохраняются в течение жизни и могут передаваться генетически благодаря названным «антиэнтропийным механизмам» (термин Ю. А. Романова, 2000).

Общеизвестно, что живые организмы как открытые термо-динамические системы обмениваются с окружающей средой материей, энергией, информацией и, добавим, временем. Последнее согласуется с тезисом о существовании времени только для открытых систем (Левич, 2013). Для успешности такого обмена необходимым условием является способность биосистемы создавать материю, генерировать энергию, информацию и время. Это подтверждают способность к образованию молекул веществ в процессах синтеза, метаболизма нутриентов поглощаемой пищи и катаболизма синтезированных веществ, а также выделение энергии в реакциях метаболизма, дефосфорилирования макроэргов (АТФ, ГТФ, КФ и др.) и других молекул или же их депротонирования и т. д. В частности, известно, что в процессах генеза и процессинга информации в нервной системе усиление активности Na,K-ATФазы клеточной мембраны нейрона на фазе следовой гиперполяризации потенциала действия приводит к восстановлению асимметрии концентрации ионов Na+ и K+ и потенциала покоя мембраны, а реаптейк транспортерами молекул нейромедиатора на уровне пресинаптической мембраны осуществляется на градиенте Н+ или Na+. Известно, что процессы сокращения и расслабления скелетных мышц при поддержании позы или двигательной активности также осуществляются при участии Na,K-ATPазы и Са,Mg-ATPазы, способных присоединять молекулы АТФ, дефосфорилировать их, а выделившуюся энергию частично использовать на перенос ионов через мембраны против градиента их концентраций. Каждый из этих процессов характеризуют временные параметры (латентность, длительность, скорость), что позволяет говорить о них как о временных процессах.

Постулируем взаимосвязь биологического времени с информацией, метаболизмом и энергией. Для формализации такой взаимосвязи рассмотрим особенности взаимодействия информации и времени, а также метаболизма и времени.

1.2. Информация и биологическое время

Известный тезис Аристотеля «Время является мерой движения (изменения)» (Аристотель, 1937) применительно к живым организмам может быть переформулирован как «время есть мера изменения информации» В пользу этого тезиса свидетельствует ряд исследований, в частности, работа R.E. Hicks и соавторов (Hicks et al., 1976), в которой авторы рассматривают проспективные и ретроспективные суждения о времени как функцию от объема полученной информации. О схожей закономерности, связывающей время и информацию в биосистемах писал М. И. Сетров (1974).

Проанализируем в этом аспекте два основные определения: информация как сообщение/сигнал о чем-либо и информация как негэнтропия (Шредингер, 2002; Бриллюэн, 2006). Другие определения условно можно считать по смыслу близкими первому или второму из них, дополняющими характеристику свойств/функций информации. Многочисленные данные из различных областей биологии свидетельствуют о справедливости для биосистем обоих определений, а также об одновременном взаимосвязанном генезе информации и эндогенного времени на разных структурных уровнях организма (Чернышева, 2011). Рассмотрим эти положения более конкретно.

Поделиться:
Популярные книги

Циклопы. Тетралогия

Обухова Оксана Николаевна
Фантастика:
детективная фантастика
6.40
рейтинг книги
Циклопы. Тетралогия

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Поле боя – Земля

Хаббард Рональд Лафайет
Фантастика:
научная фантастика
7.15
рейтинг книги
Поле боя – Земля

Кодекс Крови. Книга ХIII

Борзых М.
13. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIII

Зомби

Парсиев Дмитрий
1. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Зомби

Бестужев. Служба Государевой Безопасности. Книга 5

Измайлов Сергей
5. Граф Бестужев
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга 5

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Никита Хрущев. Рождение сверхдержавы

Хрущев Сергей
2. Трилогия об отце
Документальная литература:
биографии и мемуары
5.00
рейтинг книги
Никита Хрущев. Рождение сверхдержавы

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей