Временн?я структура биосистем и биологическое время
Шрифт:
К первой отнесем постоянно работающие в ультрадианном ритме АТФазы и пейсмекерные ионные калиевые каналы, активируемые цАМФ и гиперполяризацией мембраны (Hyperpolarization-activated Сyclic Nucleotide-gated channel, HCN). Ко второй – генераторы монофазных временных процессов, которые представлены ионными каналами, рецепторами, транспортерами, системами симпорта и антипорта клеточных мембран, в совокупности определяющих уровень активности клетки и/или ее компартментов. Охарактеризуем вклад этих групп молекулярных комплексов мембран в поддержание и модуляцию временной структуры клетки.
Известно, что Na+,K+-АТФаза плазмалеммы клеток возбудимых тканей как осциллятор в покое поддерживает асимметрию ионов по обе стороны мембраны в постоянном временном режиме. Однако при генерации потенциала действия
Обладающие разной чувствительностью к концентрации внутриклеточной цАМФ и изменениям мембранного потенциала в сторону гипер- или деполяризации HCN 1–4 типов широко представлены в мембранах клеток тканевых мышечных водителей ритма синоатриального узла сердца и клетках Кахаля в стенке пищеварительного тракта (Biel et al., 2009; Larsson et al., 2010; Liao et al., 2010), тропоцитах аденогипофиза млекопитающих (Kretchmannova et al., 2012) и пинеалоцитах эпифиза, а также в ГАМК-эргических нейронах бледного шара (Globus Pallidus) головного мозга, связанных с регуляцией двигательной активности (Chen et al., 2004). Регуляторами некоторых подтипов HCN каналов, помимо гиперполяризации мембраны и цАМФ, являются изменения трансмембранного градиента рН (показателя свободной энергии Гиббса) (Zong et al., 2001; и др.). Показано, что в нейронах-осмодетекторах супраоптического ядра гипоталамуса в мембране присутствуют HCN2, чувствительные к увеличению их объема и растяжению плазмалеммы в гипоосмотической среде (Calloe, et al., 2005; Liu, et al., 2005). Иными словами, HCN2 чувствительны к изменениям такого интегрального показателя метаболизма как осмотическое давление жидкостных сред. Описаны воздействия на активность HCN локальной температуры, отражающей уровень энергии, диссипатирующей в тепловую при процессинге информации и метаболизме. Заметим, что выключение воспринимаемой транссинаптически информации от тепловых рецепторов кожи или термочувствительных нейронов спинного мозга делает недостаточным влияние гиперполяризации и цАМФ на активацию НСN-осцилляторов в нейронах таламуса (Wechselberger et al., 2006), что свидетельствует в пользу гипотезы об информационно-энергетической природе эндогенного времени (Чернышева, Ноздрачев, 2006). В своей осцилляторной активности HCN может взаимодействовать с быстрыми кальциевыми каналами (Т-типа) клеточной мембраны, определяя частоту, скорость, паттерн разряда нейронов (Engbers et al., 2011).
Свойства HCN каналов позволяют нейрону оценивать длительность интервала между первым и «спонтанным» спайками (как двумя последовательными «событиями» на мембране). Темпоральные параметры интервала в значительной степени зависят от регулируемых характеристик: длительности гиперполяризационной фазы предыдущего спайка, скорости нарастания гиперполяризации до величины мембранного
Показано, что HCN2, HCN3 и HCN4, локализованные в перехватах Ранвье миелинизированных сенсорных и моторных нервных волокон, различаются по чувствительности к уровню гиперполяризации и цАМФ, обусловливая более низкий порог генерации спайка в сенсорных (Howells et al., 2012) и, в итоге, способствуя различению информации сенсорной, поступающей от рецепторов, и эффекторной. Вместе с тем, способность HCN к генерации периодических разрядов спайков можно расценить как один из факторов формирования и поддержания реперной или уставной точки (set point) эндогенного времени (Чернышева, 2008б) (см главу IV).
Описанные свойства осцилляторных ионых каналов клеточных мембран позволяют предположить, что HCN могут выполнять функцию сенсора времени. Действительно, следуя парадигме информаци-ионно-энергетической природы времени, представленной в главе 1, предполагаемый сенсор должен обладать: 1. прямой или опосредованной чувствительностью к уровню метаболизма (концентрации определенных метаболитов, осмотическому давлению), а также к уровню свободной энергии. Последний характеризуют, в частности, потенциал клеточной мембраны, значения рН и температуры, концентрации цАМФ, и т. д.; 2. способностью генерировать временные процессы, совокупность которых формирует эндогенное время. Перечисленные свойства присущи HCN.
Из приведенных особенностей функционирования Na,K-АТФазы и HCN как мембранных генераторов временных процессов к их общим свойствам можно отнести: зависимость активности от потенциала мембраны и поддержание асимметрии ионов/потенциала покоя; зависимость от уровня энергоносителей (АТФ или цАМФ, трансмембранного градиента Na+ и H+); взаимосвязь с информацией и метаболизмом; способность к запуску временных процессов в цитоплазме, прямому и/или опосредованному через мембранные генераторы монофазных процессов. Постоянная активность Na,K-АТФазы и длительная работа HCN после активации, а также, возможно, функция сенсора времени, реализуемая HCN, предполагает их ведущую роль в поддержании базовой временной структуры клетки.