Живая математика. Математические рассказы и головоломки
Шрифт:
Рис. 17. Шашки не приведены в порядок
Как узнать, принадлежит ли заданное расположение к первой или ко второй серии? Пример разъяснит это.
Рассмотрим расположение, представленное на рис. 17. Первый ряд шашек в порядке, как и второй, за исключением последней шашки (9). Эта шашка занимает место, которое в нормальном расположении принадлежит 8. Шашка 9 стоит, значит, ранее шашки 8: такое упреждение нормального порядка называют «беспорядком». О шашке 9 мы скажем: «Здесь имеет место 1 беспорядок». Рассматривая дальнейшие шашки, обнаруживаем упреждение для шашки 14; она поставлена на три места (шашек 12, 13, 11) ранее своего нормального положения;
Благодаря ясности, внесенной в эту игру математикой, прежняя лихорадочная страсть в увлечении сейчас совершенно немыслима. Математика создала исчерпывающую теорию игры, теорию, не оставляющую ни одного сомнительного пункта. Исход игры зависит не от каких-либо случайностей, не от находчивости, как в других играх, а от чисто математических факторов, предопределяющих его с безусловной достоверностью».
Обратимся теперь к головоломкам в этой области. Вот несколько разрешимых задач, придуманных изобретателем игры.
Исходя из расположения, показанного на рис. 15, привести шашки в правильный порядок, но со свободным полем в левом верхнем углу (рис. 18).
Рис. 18. К первой задаче Самуэля Лойда
Рис. 19. Ко второй задаче Самуэля Лойда
Исходя из расположения рис. 15, поверните коробку на четверть оборота и передвигайте шашки до тех пор, пока они не примут расположения рис. 19.
Передвигая шашки согласно правилам игры, превратите коробку в магический квадрат, а именно: разместите шашки так, чтобы сумма чисел была во всех направлениях равна 30.
КРОКЕТ [2]
Крокетным игрокам предлагаю следующие пять задач.
2
Крокет – игра не такая уж старая. В начале века в нее любили играть в различных странах. Потом на какое-то время крокет был забыт, а сейчас интерес к нему возрождается снова.
В России в крокет играли так. На земле или на траве разбивали площадку – поле(рис. 20).На поле каждая из команд вбивала по колышку(а),в определенном порядке расставляли проволочные дужки – ворота(Ь),а посредине между колышками ставили двое ворот крест-накрест – мышеловку (с). Каждый из игроков начинает от «своего» колышка. Цель игры состоит в том, чтобы, ударяя деревянным молотком по шару, провести свой шар через ворота и, попав в колышек противника, постараться вернуться к своему колышку. Не следует забывать и о противнике: нужно по мере возможности помешать ему достичь своего колышка.
Игроки делают по одному удару поочередно, но могут получить право на дополнительный удар, если им удается провести шар через ворота и попасть своим шаром по другому шару – «крокировать».
Нельзя только «попасть на кол», или «заколоться», – преждевременно ударить шаром по своему колышку.
Искусные
Крокетные ворота имеют прямоугольную форму. Ширина их вдвое больше диаметра шара. При таких условиях что легче: свободно, не задевая проволоки, пройти с наилучшей позиции ворота или с такого же расстояния крокировать шар?
Рис. 20. Схема игры в крокет
Толщина крокетного столбика внизу - 6 см. Диаметр шара 10 см. Во сколько раз попасть в шар легче, чем с такого же расстояния заколоться?
Шар вдвое уже прямоугольных ворот и вдвое шире столбика. Что легче: свободно пройти ворота с наилучшей позиции или с такого же расстояния заколоться?
Ширина прямоугольных ворот втрое больше диаметра шара. Что легче: свободно пройти в наилучшей позиции мышеловку или с такого же расстояния крокировать шар?
При каком соотношении между шириной прямоугольных ворот и диаметром шара пройти мышеловку становится невозможным?
РЕШЕНИЯ ГОЛОВОЛОМОК 15-29
15. Для упрощения задачи отложим пока в сторону все
7 двойных косточек: 0-0, 1-1, 2-2 и т. д. Останется 21 косточка, на которых каждое число очков повторяется 6 раз. Например, 4 очка имеется (на одном поле) на следующих 6 косточках:
4-0; 4-1; 4-2; 4-3; 4-5; 4-6.
Итак, каждое число очков повторяется, как мы видим, четное число раз. Ясно, что косточки такого набора можно приставлять одну к другой равными числами очков до исчерпания всего набора. А когда это сделано, когда наши 21 косточка вытянуты в непрерывную цепь, тогда между стыками 0-0,1 - 1, 2-2 и т. д. вдвигаем отложенные 7 двойняшек. После этого все 28 косточек домино оказываются вытянутыми, с соблюдением правил игры, в одну цепь.
16. Легко показать, что цепь из 28 костей домино должна кончаться тем же числом очков, каким она начинается. В самом деле: если бы было не так, то числа очков, оказавшиеся на концах цепи, повторялись бы нечетное число раз (внутри цепи числа очков лежат ведь парами); мы знаем, однако, что в полном наборе костей домино каждое число очков повторяется 8 раз, т. е. четное число раз. Следовательно, сделанное нами допущение о неодинаковом числе очков на концах цепи неправильно: числа очков должны быть одинаковы. (Такого рода рассуждения, как эти, в математике называются «доказательствами от противного».)
Между прочим, из сейчас доказанного свойства цепи вытекает следующее любопытное следствие: цепь из 28 косточек всегда можно сомкнуть концами и получить кольцо. Полный набор костей домино может быть, значит, выложен, с соблюдением правил игры, не только в цепь со свободными концами, но также и в замкнутое кольцо. Читателя может заинтересовать вопрос: сколькими различными способами выполняется такая цепь или кольцо? Не входя в утомительные подробности расчета, скажем здесь, что число различных способов составления 28-косточковой цепи (или кольца) огромно: свыше 7 биллионов. Вот точное число:
7 959 229 931 520
(оно представляет собою произведение следующих множителей: 213 х 38 х 5 х 7 х 4231).
17. Решение этой головоломки вытекает из только что сказанного. 28 косточек домино, как мы знаем, всегда выкладываются в сомкнутое кольцо; следовательно, если из этого кольца вынуть одну косточку, то
1) остальные 27 косточек составят непрерывную цепь с разомкнутыми концами;
2) концевые числа очков этой цепи будут те, которые имеются на вынутой косточке.