Живая математика. Математические рассказы и головоломки
Шрифт:
– Та же. И потому нетрудно установить, сколько сейчас лет Иванову и его жене. Сколько, читатель?
Когда мы с товарищем начали игру, у нас было денег поровну. В первый кон я выиграл 20 коп. Во второй я проиграл две трети того, что имел на руках, и тогда у меня оказалось денег вчетверо меньше, чем у товарища.
С какими деньгами мы начали игру?
Отправляясь за покупками, я имел в кошельке около 15 рублей отдельными рублями и двугривенными. Возвратившись, я принес столько отдельных рублей, сколько было у меня первоначально двадцатикопеечных монет, и столько двадцатикопеечных
Сколько стоили покупки?
РЕШЕНИЯ ГОЛОВОЛОМОК 30-41
30. После того как мать взяла половину, осталась 1/2; после заимствования старшего брата осталась 1/4; после отца - 1/8; после сестры - 1/8 х 3/5 = 3/40. Если 30 см составляют 3/40 первоначальной длины, то вся длина равна 30:3/40 = 400 см, или 4 м.
31. Так как число жителей городка неизвестно, то ответ на вопрос этой полушуточной головоломки возможен лишь в такой форме, достаточно, впрочем, определенной: «Требуется столько штук сапог, сколько в городке жителей».
В самом деле. Пусть число жителей равно п. Тогда для снабжения одноногих требуется n/3 штук сапог. Из прочих 2n/з жителей нуждается в обуви только половина - 1/3; а так как каждому из этой части населения нужно по два сапога, то им требуется 2/3 штук. Всего же для городка следует заготовить
т. е. столько штук, сколько в городке жителей.
32. Позже всего выпадает, конечно, тот волос, который сегодня моложе всех, т. е. возраст которого 1 день. Посмотрим же, через сколько времени дойдет до него очередь выпасть. В первый месяц из тех 150 000 волос, которые сегодня имеются на голове, выпадет 3 тысячи, в первые два месяца - 6 тысяч, в течение первого года - 12 раз по 3 тысячи, т. е. 36 тысяч. Пройдет, следовательно, четыре года с небольшим, прежде чем наступит черед выпасть последнему волосу. Так определилась у нас средняя долговечность человеческого волоса: четыре с небольшим года.
33. Многие, не подумав, отвечают: 200 руб. Это неверно: ведь тогда основная зарплата будет больше сверхурочных только на 150 руб., а не на 200.
Задачу нужно решать так. Мы знаем, что если к сверхурочным прибавить 200 руб., то получим основную зарплату. Поэтому если к 250 руб. прибавим 200 руб., то у нас должны составиться две основные зарплаты. Но 250 + 200 = 450. Значит, двойная основная зарплата составляет 450. Отсюда одна зарплата без сверхурочных равна 225 руб., сверхурочные же составят остальное от 250 руб., т. е. 25 руб.
Проверим: зарплата, 225 руб., больше сверхурочных, т. е. 25 руб., на 200 руб., - как и требует условие задачи.
34. Эта задача любопытна в двух отношениях: во-первых, она легко может внушить мысль, что искомая скорость есть средняя между 10 км и 15 км в час, т. е. равна 121/2 км в час. Нетрудно убедиться, что такая догадка неправильна. Действительно, если длина пробега а километров, то при 15-километровой скорости лыжник будет в пути а/ 15
потому что каждая из этих разностей равна одному часу. Сократив на а, имеем
или, по свойству арифметической пропорции:
равенство неверное:
т. е. 4/24, а не 4/25.
Вторая особенность задачи та, что она может быть решена не только без помощи уравнений, но даже просто устным расчетом.
Рассуждаем так. Если бы при 15-километровой скорости лыжник находился в пути на два часа дольше (т. е. столько же, сколько при 10-километровой), то он прошел бы путь на 30 км больший, чем прошел в действительности. В один час, мы знаем, он проходит на 5 км больше; значит, он находился бы в пути 30: 5 = 6 ч. Отсюда определяется продолжительность пробега при 15-километровой скорости: 6-2 = 4 ч. Вместе с тем становится известным и проходимое расстояние:
15 х 4 = 60 км.
Теперь легко уже найти, с какой скоростью должен лыжник идти, чтобы прибыть на место ровно в полдень, - иначе говоря, чтобы употребить на пробег 5 час.
60: 5 = 12 км.
Легко убедиться испытанием, что этот ответ правилен.
35. Задачу можно решить, не обращаясь к уравнению, и притом различными способами.
Вот первый прием. Молодой рабочий проходит за 5 мин 1/4 пути, старый - 1/6 пути, т. е. меньше, чем молодой, на
Так как старый опередил молодого на 1/6 пути, то молодой настигнет его через
пятиминутных промежутка, иначе говоря, через 10 мин. Другой пример проще. На прохождение всего пути старый рабочий тратит на 10 мин больше молодого. Выйди старик на 10 мин раньше молодого, оба пришли бы на завод в одно время. Если старик вышел только на 5 мин раньше, то молодой должен нагнать его как раз посередине пути, т. е. спустя 10 мин (весь путь молодой рабочий проходит за 20 мин).
Возможны еще и другие арифметические решения.
36. Нешаблонный путь решения задачи таков. Прежде всего поставим вопрос: как должны машинистки поделить между собою работу, чтобы закончить ее одновременно? (Очевидно, что только при таком условии, т. е. при отсутствии простоя, работа будет выполнена в кратчайший срок.) Так как более опытная машинистка пишет в 11/2 раза быстрее менее опытной, то ясно, что доля первой должна быть в 11/2 раза больше доли второй - тогда обе кончат писать одновременно. Отсюда следует, что первая должна взяться переписывать 3/5 доклада, вторая - 2/5.