Чтение онлайн

на главную - закладки

Жанры

Жизнь Георга Кантора

Френкель Адольф

Шрифт:

Поразительное, почти не известное замечание Кантона, по-видимому, доказывает, что уже в начале семидесятых годов он ясно понимал значение зарождавшихся у него идей, а также сопротивление, которое они должны вызвать; в то время исследования о тригонометрических рядах только что привели его к актуальной бесконечности, а первая его работа, посвященная теории множеств в узком смысле [10], еще не была опубликована. Намереваясь сделать доклад в Обществе Естествоиспытателей города Галле для которого, естественно, следовало выбрать общедоступный предмет, он остановился на теории вероятностей, которой занимался уже в течение нескольких лет. И вот, в докладе, состоявшемся б декабря 1873 г., он замечает по поводу француза де Мере, оспаривавшего авторитет Паскаля в одном вопросе теории вероятностей: «Как я полагаю, шевалье де Mepe может послужить предостерегающим примером всем противникам точного исследования, какие встречаются во все времена и повсюду; ибо с ними также может приключиться, что именно в том месте, где они пытаются нанести науке смертельные раны, вскоре расцветет перед их взором новая ветвь, возможно, плодотворнее прежних - как теория вероятностей перед взором шевалье де Мере». Отметим еще, что в более поздних письмах к Миттаг-Лефлеру Кантор постоянно называет Кронеккера псевдонимом «г-н фон Мере».

В противоположность Кронеккеру, Вейерштрасс уже тогда проявил полное понимание идей своего прежнего ученика. Он заинтересовался уже докладом в семинаре, где тот, еще будучи студентом, располагал рациональные числа в последовательность; точно так же, после недолгой первоначальной озадаченности, он очень быстро оценил сообщенное ему в 1873 году понятие счётности в его общем виде, и сразу воспользовался счётностью алгебраических чисел в одном вопросе, касающемся действительных функций [7] . Далее Кантор по предложению Вейерштрасса впервые применил понятие счетности к анализу (в

работе [8]), и обратно, канторова теория объема в [13] побудила Вейерштрасса заняться теорией действительных функций [8] .

7

См. письмо Вейерштрасса П. Дю Буа-Реймону от 15 декабря 1874 г. ( Acta. Mathematica, 39, стр. 206, 1924)

8

См. письмо Вейерштрасса Софье Ковалевской от 16 мая 1885 г. ( ibid. , стр.195 и далее)

С работой [11] тесно связана, и в некотором смысле противостоит ей, работа [12], в которой предпринята попытка выяснить значение непрерывности для понятия размерности; идея эта, по существу, возникла из переписки с Дедекиндом. Как известно, теорема об инвариантности размерности, о которой идет речь в этом (недостаточном) доказательстве, была строго обоснована лишь Л. Э. И. Брауэром много десятилетий спустя.

Начало восьмидесятых годов было временем интенсивнейшего творчества Кантора, могучего, переливающегося через все видимые границы развертывания его гениальных идей; но тогда же произошел тяжелый кризис в его жизни, не покинувший его до конца.

Работа [13], опубликованная в шести частях в 1879-84 годах, принадлежит к тем историческим явлениям, когда совершенно новая мысль, открывающая целую эпоху и полностью противоречащая воззрениям прошлого и настоящего, пробивается и кристаллизуется со все возрастающей отчетливостью, лишь постепенно осознаваемая в своей смелости и новизне самим ее творцом. В 1870 году ему впервые является идея трансфинитных чисел; в 1873 году он постигает значение счетности и зияющую пропасть, отделяющую ее от континуума; лишь теперь он решается предложить современникам свои идеи во всей их широте, отдавая себе полный отчет в их возможном воздействии: так, он говорит о «предметах, примыкающих к теории множеств или теснейшим образом с нею связанных, как, например, современная теория функций и, с другой стороны, логика и теория познания». Во всяком случае, часть пятая этой работы [13] , вышедшая также отдельно с предисловием [9] , делает ее важным событием не только в математике и философии, но и вообще в истории науки и человеческого мышления; без сомнения, она еще окажется поучительной и ценной с самых разнообразных точек зрения, пока нам недоступных.

9

Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-phlosophischer Versuch in der Lehre des Unendlichen (Основания общей теории многообразий. Математико-философский опыт учения о бесконечном), Лейпциг, 1883 г.

Редакция “Mathematische Annalen” снискала высокую заслугу, открыв страницы своего журнала идеям, решительно неприемлемым для математического и философского мира того времени, которым еще предстояло более десятилетия ожесточенно бороться за свое признание.

В серии статей [13] излагается, главным образом, теория точечных множеств [10] ; вместе с дополняющими ее работами [14]–[16] она содержит, прежде всего, теорию производных множеств, исследование строения точечных множеств и теорию объема, а также теорию порядковых чисел, в особенности второго класса. Следует упомянуть еще некоторые отдельные места, непосредственно не относящиеся к этим основным темам, но имеющие общее значение: сохранение свойства связности Rn, когда из него удаляется счетное всюду плотное множество, после чего в столь разрывном пространстве оказывается возможным непрерывное движение; признание автора в конце части пятой, что успешное продолжение его исследований невозможно без расширения числового ряда в трансфинитную область, и его убеждение в том, что это расширение, как бы оно ни казалось сначала спорным математическому миру, в конце концов проложит себе путь; осуждение бесконечно малых величин, а также финитистской точки зрения Кронеккера, и дискуссия с финитистски ориентированными философами древности и средних веков до Спинозы, Лейбница и Канта; историко-критический и логико-математический анализ сущности континуума; общий метод вложенных интервалов. В эту последовательность статей вклинивается работа [8] , в которой Кантор, по инициативе Вейерштрасса, использует понятие счетности в своем методе сгущения особенностей.

10

Еще одна, седьмая статья, предусмотренная Кантором, не была осуществлена (что можно объяснить уже его болезнью)

В безмерном духовном напряжении, связанном с зарождением революционных идей работы [13], в особенности теории трансфинитных чисел, и с утверждением их вопреки сопротивлению современных исследователей, отягчающую роль сыграли две специфических трудности: борьба с проблемой континуума и усиление антагонизма с Кронеккером. О том и другом мы хорошо осведомлены благодаря изданным А. Шенфлисом письмам Кантора к Миттаг-Лефлеру [11] от 1884 года, когда произошел решающий поворот в его жизни.

11

А. Шенфлис. Кризис в математическом творчестве Кантора. Acta Mathem., 50, 1–23 (1928). Ср. также Миттаг-Лефлер, ibid., стр. 25 и далее.

Когда в начале 1884 года была завершена основополагающая работа [13], Кантор уже далеко продвинул открытое еще в [10] и подчеркнутое в [11] деление бесконечных множеств на два класca – счетные и эквивалентные линейному континууму; как при этом обнаружилось, ко второму классу относятся, прежде всего, «совершенные множества». С другой стороны, также отправляясь от точечных множеств, он ввел трансфинитные порядковые числа второго числового класса (как символы порядка производных), конструируя их с помощью предельных процессов, подобных построению иррациональных чисел в виде фундаментальных рядов. Таким образом, казалось чрезвычайно вероятным, что второй числовой класс как раз имеет мощность континуума; и в самом деле, в шестой части работы [13] Кантор объявляет, что с помощью своих предыдущих теорем он может это предположение доказать; это должно было увенчать все полученные им результаты. Однако, его настойчивые попытки провести такое доказательство, как в то время, так и позже, летом и осенью 1884 года, с привлечением все новых методов, оказались безуспешными [12] ; в ноябре он даже отказывается от своего предположения - построив мнимое доказательство, что континууму вообще не соответствует в качестве мощности никакой алеф - но на следующий же день изменяет это мнение. За повторными безуспешными усилиями следует усталость, уныние, разочарование; осенью 1884 года, после кризиса в состоянии здоровья, о котором пойдет речь дальше, вдруг обнаруживается стремление вообще отойти от математики. Он хочет полностью оставить ее и намеривается даже просить у министерства разрешения перейти в своей преподавательской деятельности от математики к философии [13] . Но прежде всего он отдается в то время, с величайшей энергией и, очевидно, в связи с расстройством здоровья, попыткам доказать, что автором пьес Шекспира был Френсис Бекон [14] . Он и в этом направлении проявил свойственные ему увлеченность и настойчивость, о чем свидетельствуют, между прочим, опубликованные им по этому вопросу сочинения [15] . Как видно из его письма Дедекинду от 28 июля 1899 г., лишь вследствие недостатка времени и денег он в конце концов перестал разрабатывать эту тему, которой в периоды депрессии занимался даже в своих лекциях и семинарах; но живейший интерес к ней он сохранил на всю жизнь. Этим настроением разочарования в математике, и лишь отчасти действительным положением вещей объясняется его высказывание в то время, что он предпринял «утомительное и не особенно благодарное исследование точечных множеств», главным образом, для того, чтобы применить результаты к «естественному учению об организмах», для которого недостаточны применявшиеся до сих по механические принципы и которым он занимается уже в течение четырнадцати лет.

12

Тогда же, летом 1884 г. П. Таннери, предпринял попытку доказать гипотезу Кантора; рассуждения его содержат ошибку. ( Bull. Soc. Math. de France, 12, 90–96, 1884)

13

В действительности Кантор время от времени вел философские семинары, например, занимался Лейбницем, с целью разъяснить свою теорию актуальной бесконечности

посредством сравнения с его мыслями. Как он любил говорить при этом, в качестве ординарного профессора философского факультета он имел право читать лекции даже о санскрите

14

В письме Кантора к Миттаг-Лефлеру от 17 декабря 1884 г., где, по-видимому, впервые идет речь об этом предмете, говорится: «Френсис Бекон, он и только он мог быть автором этих шедевров; ибо один и тот же огненный дух встречаем мы, с одной стороны, в этих драмах, а с другой - в “Moral essays” («Опыты о морали») и в других трудах Бекона»

15

Resurrectio Divi Quirini Francisci Baconi Baronis de Verulam Vicecomitis Sancti Albani CCLXX annis post obitum eius IX die apriles anni MDCXXVI. (Pro manuscripto.) Cura et impersis G(eorgii) C(antoris). Halis Saxonum MDCCCXCVI. [Воскресение Френсиса Бекона, барона веруламского, виконта Сент-Албанского, после смерти его 9 апреля 1626 года. (о рукописи). Издано усердием и за счет Г(еорга) К(антора). Галле в Саксонии, 1986(C предисловием на английском языке за подписью: “Dr. phil. George Cantor, Mathematicus” «Д-р философии Георг Кантор, математик».

Confessio fidei Francisci Baconi Baronis de Verulam…cum versione Latina G. Rawley…, nunc denuo typis excusa cura impensis G. C. Halis Saxonum MDCCCXCVI.

(C латинским предисловием за подписью G. C., 5 стр.). Собрание Релея тридцати двух стихотворений в память Френсиса Бекона. Свидетельство в пользу теории Бекона-Шекспира. Издано с предисловием Георга Кантора. Галле, 1897

На это решение оставить математику (впрочем, неоднократно нарушенное уже в течение 1885 года чисто математическими исследованиями), вероятно, еще сильнее неудачи с проблемой континуума повлияло разочарование, вызванное у Кантора отношением к его предыдущим трудам в математическом и философском мире. Достигший сорокалетнего возраста исследователь, выступавший в течение более десяти лет со своими новыми идеями перед научной общественностью, естественно, должен был стремиться к признанию его труда коллегами и к научному влиянию на младших из них. Но этого он был почти лишен. Лишь в очень ограниченной мере могла способствовать осуществлению его желаний дружба с Миттаг-Лефлером, длившаяся до конца и настолько прочная, что смогла противостоять известным (отчасти действительным, отчасти же лишь воображаемым) расхождениям во взглядах в 1884-85 годах. Когда Миттаг-Лефлер в 1881 г. приступил к преподаванию во вновь созданном Стокгольмском университете и сразу же основал журнал Acta Mathematica, он не только пригласил Кантора участвовать своими публикациями в новом журнале, но и позаботился перевести на французский язык работы [4], [5], [9], [10] и, что особенно важно, большую часть работы [13] (части 1–5), опубликовав их во 2-м томе Acta. Уже сама по себе эта поддержка со стороны уважаемого ученого, пользовавшегося значительным влиянием ввиду его отношений с Вейерштрассом и с кругом парижских математиков, была в моральном отношении важна для Кантора в то время, когда для него был закрыт «Журнал Крелля» и господствовавшее влияние берлинских (а, по-видимому, и геттингенских) математиков было ему прямо враждебно. Не менее очевидно было и собственно научное воздействие дружбы с Миттаг-Лефлером; кроме начавшихся в 1883 году, в некотором смысле параллельных публикациям Кантора работ Бендиксона и Фрагмена о точечных множествах, в томах Acta. за 1883–84 годы появился целый ряд весомых применений теоретико-множественных понятий и результатов к задачам теории функций и геометрии, авторами которых были как сам Миттаг-Лефлер, так и восходившие тогда светила - Пуанкаре и Шеффер. Кантор не заметил сначала работы Пуанкаре, в которой теория точечных множеств была привлечена к исследованию строения области существования автоморфных функций; но при поездке в Париж весной 1881 г. он имел случай убедиться, что Пуанкаре знает и ценит его работы [16] . Б'oльшие надежды возлагал он на влияние статьи Миттаг-Лефлера, которая должна была продемонстрировать силу и значение идей Кантора в области вейерштрассовой теории функций, стоявшей тогда в центре внимания, - в ней изучался вопрос о возможности построения аналитических функций с надлежащим образом заданными особыми точками. Тем глубже было его огорчение, когда обнаружилось, что ссылка на Кантора, напротив, во многом повредила приему, оказанному этой работе, особенно в результате сильного также и в Париже воздействия позиции Кронеккера.

16

По свидетельству Миттаг-Лефлера (Acta Math.,50, стр. 26, 1928), фундаментальные работы [13] были переведены для Acta на французский язык Пуанкаре

Столь же нерешительно, как математики, отнеслись к достижениям Кантора и философы; первое подробное сочувственное изложение, где содержатся также ссылки на предшествующие неосновательные оценки Кантора со стороны философов (Баллауф, Вундт [17] , Лаас, Г. Коген), принадлежит Б. Л. Керри [18] . Завершается оно характерным суждением, согласно которому философия, «прежде рассматривавшая учение о непрерывном в его отношении к эвентуально составляющему его дискретному как свое самое неотъемлемое достояние», по-видимому, в исследованиях о многообразиях «породила из себя еще одну новую дисциплину», с которой материнская наука должна поддерживать знакомство, не ущемляя, однако, независимого существования. В это же время математик П. Таннери, сам активно занимавшийся идеями Кантора, издает предназначенное для философов и ориентированное в сторону философских вопросов введение в круг идей теории множеств [19] , по-видимому, не замеченное Кантором.

17

По поводу возражений Вундта, а также школы Гербарта (ср. Ztschr. Exacte Philos., 12) высказывается и сам Кантор в заключении статьи “Uber die verschiedenen Standpunkte in Bezug auf des aktuelle Unendliche” («О различных точках зрения на актуальную бесконечность), а также в “Mitteilungen zur Lehre vom Transfinften” («К учению о трансфинитном»); в последней речь идет также о рецензии Баллауфа

18

«Исследования Георга Кантора о многообразиях», Vierteljahresschrift f. Wiss. Philos., 9, 191–232 (1885)

19

«Научное понятие бесконечного: Зенон Элейский и Георг Кантор», Revue philos. De la France et l’'Etranger, 20, 385–410 (1885)

Но, конечно, сильнее всего задело Кантора отрицательное отношение не столько философов, сколько подавляющего большинства его коллег по специальности, и в особенности позиция Кронеккера. В этом, безусловно, главная причина кризиса 1884 г. Примерно до 1880 г. внешние отношения между Кронеккером и Кантором, кажется, оставались хорошими, несмотря на отрицательную с самого начала позицию, занятую Кронеккером по отношению к теоретико-множественным интересам своего бывшего ученика. Так обстояло дело, например, еще при посещении Кронеккера Кантором осенью 1879 г. Но уже написанная в 1882 г. часть 5 работы [13] содержит два примечательных места, где он высказывается против всевластия натуральных чисел и за нестесняемую свободу математического творчества; оба они недвусмысленно направлены против Кронеккера. Вся сила его неприязни против Кронеккера, влияние которого выходило далеко за пределы Германии, видна из его писем Миттаг-Лефлеру за 1884 год (в числе 52!), где это чувство проявляется с не сдерживаемой остротой. К его гневу примешивается также опасение, что предназначенная к опубликованию в Acta Mathematica (но в действительности не появившаяся там) статья Кронеккера может не только нанести ему дальнейший вред в глазах публики, но и отдалить его от верного друга, так как это изложение научных взглядов Кронеккера должно было, в частности, показать, «что результаты современной теории функций и теории множеств лишены всякого реального значения». В самом деле, Кронеккер смог оказать тогда враждебное Кантору влияние на Эрмита и, кажется, также на Вейерштрасса, занимавших в то время, наряду с ним, ведущее место в математическом мире. Впрочем, это длилось недолго; более того, оба они - вопреки относящимся к Эрмиту высказываниям Пуанкаре на римском Международном математическом конгрессе 1908 г.
– вскоре стали искренними друзьями Кантора и поклонниками его трудов [20] . Но весной 1884 г. у Кантора произошел психический кризис; конечно, нельзя считать единственной причиной его описанный выше конфликт, безусловно, обостривший и, может быть, непосредственно вызвавший его. Это психическое заболевание, проявления которого время от времени повторялись до его смерти, неоднократно вынуждало его к пребыванию в клинике. Ближайшим последствием кризиса была депрессия, принизившая значение его работ в его собственных глазах, усилившая у него чувство вины за возникшие раздоры и побудившая его просить у Кронеккера извинения. Этот акт раскаяния, исполненный письменно и устно, привел, правда, к внешне удовлетворительным отношениям между обоими учеными, но ничего не изменил в диаметральной противоположности их взглядов и в постоянстве, с которым Кронеккер до самой смерти активно противодействовал идеям Кантора.

20

Ср. письма Кантора У. Г. Юнгу от 1908 г. (см. Proc. Lond. Math. Soc. (2), 24, стр. 422 и далее, 1926) и Джордену от 1905 г. (см. Г. Кантор, Работы по основаниям теории трансфинитных чисел. Перевод введение и примечание Филиппа Э. В. Джордена, Чикаго и Лондон, 1915, стр. 48.

Поделиться:
Популярные книги

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Кодекс Крови. Книга ХIV

Борзых М.
14. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIV

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х