Чтение онлайн

на главную - закладки

Жанры

Жизнь Георга Кантора

Френкель Адольф

Шрифт:

В том же 1897 г., когда вышла последняя работа Кантора, в Цюрихе состоялся первый «Международный математический конгресс». Он встретил на конгрессе единодушное признание; наряду с секционным сообщением Адамара, использовавшего понятия теории множеств как уже известные и необходимые орудия, доклад Гурвица на первом пленарном заседании «О развитии общей теории аналитических функций в новейшее время» особенно ярко продемонстрировал, насколько плодотворными оказались для теории функций идеи Кантора и среди них столь оспаривавшиеся трансфинитные числа. Надо отметить, что три уже тогда ведущих исследователя, Гильберт, Гурвиц и Минковский, состоявшие между собой в дружбе, первые в странах немецкого языка поняли и пытались разъяснить оригинальность идей Кантора и значение его теории множеств; было это еще «в то время, когда в задававших тогда тон математических кругах самое имя Кантора было под запретом, а в его трансфинитных числах видели всего лишь вредные порождения фантазии» [27] . Не только значение этих ученых, но также их особая связь со строгими методами теории чисел способствовали разрушению многих предубеждений против теоретико-множественных построений.

27

Ср. речь Гильберта, посвященную памяти Минковского (G"ottinger Nachrichten, 1909; Собрание сочинений Минковского, т.1), где цитируется также меткое замечание из доклада Минковского об актуально-бесконечном в природе. В обоих докладах упоминается оппозиция Кронеккера по отношению к идеям Кантора

Кантор,

чрезвычайно обрадованный признанием его в Цюрихе, в том же году рассказал узкому кругу немецких математиков о возникновении и основных результатах своей теории; этот неофициальный доклад, состоявшийся во время брауншвейгского собрания немецкого математического объединения, известен лишь по неопубликованным заметкам И. Штеккеля. Первые систематические изложения теории множеств, не принадлежащие ее автору, появились во Франции; прежде всего следует упомянуть книгу Бореля “Lecons sur la th'eorie des fonctions”(«Лекции по теории функций») [28] , в значительной степени уже представлявшую собой учебник теории множеств; там было, между прочим, впервые опубликовано найденное учеником Кантopa Феликсом Бвршптейном (первое безупречное) доказательство теоремы эквивалентности. Этой широко распространенной книгой и вышедшим в Jahresbbericht der Deutschen Maths.-Ver. за 1899-1890 гг. первым обзором Шенфлиса Entwicklung der Lehre von rer Punktmannigfaltigkeiten («Развитие теории точечных многообразий») и завершилось, в известном смысле, победоносное шествие теории множеств; она превратилась в дисциплину, равноправную другим отраслям математики, а вскоре даже получившую над ними преимущество. Первый учебник, специально посвященный теории множеств (супругов Юнг), появился в Англии в 1906 г., в Германии же такая книга вышла лишь в 1914 г. («Основы» Хаусдорфа); и все же горькие слова Кантора в письме Юнгу от 1908 г., жалующегося, что его в Германии (в отличие от Англии) не знают, представляются позднейшему наблюдателю несправедливыми или, может быть оправданными лишь в отношении внешних почестей [29] . В действительности, например, уже задолго до начала века план «Энциклопедии математических наук» предусматривал статью по теории множеств (вышедшую в 1898 г.), и притом не среди отдельных геометрических дисциплин в томе III, но в числе первых статей I-го тома, наряду с основными разделами арифметики.

28

Ср. также его статьи в Revue philosophique за 1899 и 1900 годы, перепечатанные во 2-ом (и 3-ем) издании названной книги, в 1914 (1928) г. Если в учебнике Бореля имя Кантора лишь бегло упоминается, а результаты его доказываются совсем другим путём, то во введении к этим статьям Борель отвергает всякое подозрение в возможной недооценке Кантора, могущее возникнуть по этому поводу

29

Все же нас удивляет теперь, что в Jahrbuch fur die Fortschritte der Mathematik, уже с 1892 г. нашедшем в лице Виванти сведущего референта по теории множеств, до 1904 года теоретико-множественные работы (за исключением отнесенных к геометрии) обсуждались в разделе «Философия», а затем переместились в подраздел между философией и педагогикой (и лишь под редакцией Лихтенштейна эта дисциплина обрела самостоятельное положение)

В 1899 г. когда супруги Кантор отпраздновали в Гарце серебряную свадьбу, мы видим 54-летнего исследователя вновь отдавшимся со всей энергией математическому творчеству. Это не привело, впрочем, к существенным достижениям или к публикации. Но и впоследствии он, во всяком случае сознательно, не отказывается от математической продукции. Так, в 1903 г. он докладывает на кассельском Собрании естествоиспытателей свои (неопубликованные) «Замечания к теории множеств», направленные, главным образом, против некоторых возражений французских философов. Около 1905 г. он состоит в весьма оживленной научной переписке с Филиппом Э. Б. Джорденом, а в 1908 г. даже обещает Юнгу представить свою следующую статью London Mathematical Society (Лондонскому математическому обществу). В особенности занимала его, как и прежде, проблема континуума, названная Гильбертом в его докладе на торжественном заседании Парижского международного математического конгресса (1900) в качестве первой из «математических проблем». Как рассказывает Шенфлисс [30] , переживанием был для Кантopa доклад Юлиуса Кенига на Гейдельбергском международном математическом конгрессе (1904); опираясь на принадлежащее Ф. Бернштейну соотношение между алефами, Кениг пытался доказать, что мощность континуума не может быть алефом. Доклад этот произвел глубокое впечатление не только на Кантора, убежденного в возможности полного упорядочения любого множества и даже в соотношении , но и на весь математический мир, в центре интересов которого стояла тогда теория множеств. Кантор предпринял затем лихорадочные усилия опровергнуть этот результат, и вскоре, к его удовлетворению, оказалось, что лемма Бернштейна верна лишь в некоторых предположениях, делающих вывод Кенига несостоятельным.

30

Jahresbbericht der Deutschen Maths.-Verein, 31, стр. 100 и далее (1922)

В эти годы запоздалого, но тем более желанного для него научного признания пришли также и внешние почести [31] , которым он от души радовался: избрание в почетные члены Лондонского математического общества (1901) и Харьковского математического общества, а также в члены-корреспонденты Королевского венецианского института наук, литературы и искусств (1904), присуждение степени доктора математики honoris causa университетом Христиании (1902), медали Сильвестра британским Королевским обществом (1904), степени почетного доктора университетом Сент-Эндрью (1911). Однако, состояние нервной системы неоднократно вынуждало его в эти годы прерывать чтение лекций; в 1905 г. он был освобожден от служебных обязанностей, а в 1913 году окончательно отказался от университетской должности. Международное празднование его семидесятилетия было намечено на 1915 год, но не могло состояться из-за войны; все же многие немецкие математики явились в Галле воздать ему честь [32] ; тогда же был заложен мраморный бюст его, с 1928 года стоящий в вестибюле университета Галле. Его золотой докторский юбилей не мог быть публично отмечен, вследствие состояния его здоровья; 6 января 1918 г. Кантор скончался в психиатрической клинике г. Галле.

31

Уже в 1896 г. он избирается членом правления Секции математики и астрономии Леопольдо-Каролинской Немецкой академии естествоиспытателей в Галле, членом которой он был с 1889 г.

32

Ср. отчет Лорея в Ztschr. f. Math. u. Naturw. 46, 269-274 (1915)

5. Кантор как преподаватель и как личность

Более сорока лет Кантор занимался преподавательской деятельностью в университете Галле; выдающемся преимуществом его лекций была строгость и четкость в определении понятий. Изложение, по рассказам его учеников, было ясным и упорядоченным, но в то же время оживленным и возбуждающим интерес. (Так обстояло дело, во всяком случае, в периоды хорошего самочувствия; в последние годы в лекциях приходилось делать более или менее продолжительные перерывы, когда он был нездоров). На подготовку лекций он затрачивал немного времени. Поэтому изложение интересовавших его предметов, доставлявшее, по словам многих его слушателей, высокое эстетическое наслаждение, весьма заметно отличалось от чтения им других курсов; к этим последним принадлежала также теория функций, находившаяся тогда в Галле в большом пренебрежении. Но, например, к теории групп

Кантор проявлял несомненный интерес. Время от времени он докладывал на семинаре свои открытия в теории множеств. Число его слушателей часто оказывалось очень небольшим, нередко сокращаясь до 1-3; это объяснялось низкой посещаемостью математических предметов в Галле, существенно поднявшейся лишь в начале этого столетия. Можно понять поэтому стремление Кантора перейти в другой университет. В совокупности он подготовил все же немало кандидатов на учительские должности, но число диссертаций, выполненных под его руководством, очень невелико [33] , и лишь немногие талантливые исследователи были им непосредственно воспитаны. Это связано отчасти с тем, что Кантор, как правило, сразу же сам реализовал свои идеи и не располагал поэтому избытком привлекательных задач; по той же причине он не оставил ценного неопубликованного наследия. Сверх того, его исключительная погруженность в занимавшие его проблемы мало способствовала усилиям по привлечению молодых талантов.

33

Докторанты по математике (немногочисленные в то время) большею частью приезжали в Галле на короткое время с уже готовыми диссертациями, главным образом из Берлина

В человеческом отношении он был верным и отзывчивым другом своих слушателей; дом его всегда был открыт для них, как и для многих студентов других специальностей, привлекая их интимной атмосферой, музыкой и возбуждающей, юношески свежей общительностью; значительную роль в этом играла его любезная супруга. Даже в пожилом возрасте он не щадил усилий, чтобы оказать помощь своим ученикам или просто доставить им радость; в частности, к молодым приват-доцентам он относился с исключительной благожелательностью, и в их круге было известно, что каждый, обратившийся к Кантору с просьбой, важной или не столь важной, всегда найдет в нем дружески расположенного слушателя и советчика.

Что касается личности Контора вообще, то все знавшие его рассказывают о его искрящейся, остроумной, оригинальной натуре, склонной к внезапным вспышкам и всегда чистосердечно радовавшейся собственным шуткам; о его неутомимом темпераменте, придававшем - наряду с его внушительной, крупной фигурой - особую привлекательность математическим собраниям, в которых он участвовал, вызывавшем неистощимый поток его мыслей - и поздним вечером, и ранним утром, и в области математики, и во многих областях его внематематических интересов; о его честном характере, верном друзьям, готовом прийти на помощь, дружелюбном в обращении; и, наряду с этим, о характерной рассеянности ученого. В устном обмене мыслями он был, как правило, дающим, и не был расположен сразу же схватывать чужие идеи. Всем своим мыслям он отдавался с равной любовью и настойчивостью; возможно, возникновением труда его жизни мы обязаны не столько вложенной в него силе мысли, и даже не столько гениальной интуиции, в соединении с мощной способностью к формированию понятий, сколько невероятной энергии, с которой он преследовал свои цели, вопреки всем препятствиям. Эта непоколебимая стойкость вытекала из его глубокого убеждения в истинности, даже в реальности своих идей; в письме от 26 января 1884 г. он писал Миттаг-Лефлеру, по поводу желания Кронеккера видеть свои работы принятыми в Acta Mathematica c тем же беспристрастием, что и работы Кантора: «Может быть, его стряпня и нуждается в беспристрастии, в большой снисходительности и бережности; для моих же работ я требую пристрастия, но не пристрастия к моей бренной личности, а пристрастия к истине, которая вечна и взирает с суверенным презрением на подстрекателей, воображающих, будто могут долго мешать ей своей жалкой писаниной». И несколькими месяцами позже: «... здесь заведомо ставится вопрос о силе, и он никогда не может быть решен уговорами; спрашивается, чьи идеи сильнее, шире и плодотворнее Кронеккера или мои; лишь конечный успех со временем решит исход нашей борьбы!!» [34] . Без сомнения, та же стойкая и энергичная преданность своим идеям десятилетиями привязывала его к проблеме Бекона, вопреки всем стараниям друзей-математиков отвлечь его от этого занятия.

34

Ср. также в “"Uber die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede”: «Вероятно, я первый по времени защищая эту точку зрения [Принятие актуально-бесконечного in concreto (в конкретном) и in abstracto (в абстракции)] с полной определенностью и со всеми ее следствиями; но я наверное знаю, что не буду последним ее защитником!»

Однако, убеждение в величии и значительности своего труда не сделало Кантора надменным, как это случалось со многими выдающимися исследователями. Наряду с дружескими отношениями, связывавшими его с Дедекиндом и Миттаг-Лефлером, об этом свидетельствуют и многие отдельные черты. Так, даже в 1905 г., посылая, по желанию Миттаг-Лефлера, свой портрет для Acta, он пишет при этом: «Я предпочел бы, чтобы Вы не печатали моего портрета, так как считаю это для себя чрезмерной честью». Характерно в этом отношении также предисловие к отдельному изданию его важнейшей работы (часть 5 работы [13]).

Если Кантор высоко ценит и стремится защитить дух свободы и независимости среди математиков, то он ни в коем случае не делает это pro domo suo (для собственного употребления); требования, вытекающие из его убеждений, он предъявляет и к самому себе. Это видно, например, из его содействия Бендиксону, письмо которого Кантору, (написанное в мае 1883 г.) по его настоянию было обработано для печати и опубликовано во 2-ом томе Acta; за благодарное и истинно научное отношение к г-ну Бендиксону [35] . Миттаг-Лефлер выражает ему свою признательность. Не менее характерна позиция Кантора по отношению к его величайшему предшественнику в понимании актуальной бесконечности, Бернарду Больцано: он признает заслуги этого «в высшей степени остроумного философа и математика», в котором видит «самого решительного защитника» собственно-бесконечного, несмотря на критику его недостатков. При той уверенности в ce6e, которая отличала его уже в 80-ые годы, обычный сдержанно-вежливый тон его полемики, уважающий права оппонента [36] , должен рассматриваться не как признак робости, а как выражение искренней внутренней скромности. Гнев его прорывался лишь в тех случаях, когда, по его мнению, односторонность или вера в авторитет преграждали путь истине; и тогда бывало, что раздражение выходило за пределы спорного предмета.

35

Ср. также подстрочное примечание Миттаг-Лефлера в начале работы Кантора [I5], а также оценку заслуги Бендиксона в части 6 работы [13]

36

Особенно характерна в этом смысле рецензия Кантора на книгу Германа Когена “Prinzip der Infinitesimalmethode und seine Geschichte” («Принцип метода бесконечно малых и его история») в Deutche Literaturzeitung, 5, ст. 266–268 (1884)

Замечательно, что этот исследователь, как будто гонимый вперед непреодолимой силой своих идей, заботливо относится к требованиям изложения и терминологии. Так, 31 января 1884 г. он пишет Миттаг-Лефлеру: «...Особенно радует меня, когда Вы хвалите стилистическое искусство и сжатость изложения, потому что эти вещи требуют от меня некоторых усилий, и уж если удаются, то это моя собственная заслуга...». ... А в письме от 20 октября 1884 года, содержащем уже, по существу, работу [16] , Кантор упоминает, что перед этим советовался с Шеффером по поводу вновь вводимых обозначений, «в выборе которых, - как он пишет, - я чрезвычайно предусмотрителен, исходя из убеждения, что для развития и распространения теории немаловажна удачная, возможно более подходящая к предмету терминология». Благодаря удачному, как правило, выбору терминов и живому, недогматическому, избегающему ненужных осложнений способу рассуждений, оригинальные работы Кантора и сейчас можно рекомендовать даже начинающему в качестве введения в предмет – что в математике случается не часто.

Поделиться:
Популярные книги

Виктор Глухов агент Ада. Компиляция. Книги 1-15

Сухинин Владимир Александрович
Виктор Глухов агент Ада
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Виктор Глухов агент Ада. Компиляция. Книги 1-15

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Санек 3

Седой Василий
3. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 3

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Кодекс Крови. Книга ХIV

Борзых М.
14. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIV

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х