Большая Советская Энциклопедия (ВЕ)
Шрифт:
P (A ) = pi + ps + … + pk . (1)
Частный случай p1 = p2 =... ps = 1/S приводит к формуле
Р (А ) = r/s. (2)
Формула (2) выражает так называемое классическое определение вероятности, в соответствии с которым вероятность
Пример. При бросании двух игральных костей каждый из 36 возможных исходов может быть обозначен (i , j ), где i — число очков, выпадающее на первой кости, j — на второй. Исходы предполагаются равновероятными. Событию А — «сумма очков равна 4», благоприятствуют три исхода (1; 3), (2; 2), (3; 1). Следовательно, Р (A ) = 3/36 = 1/12.
Исходя из каких-либо данных событий, можно определить два новых события: их объединение (сумму) и совмещение (произведение). Событие В называется объединением событий A 1 , A 2 ,..., Ar ,-, если оно имеет вид: «наступает или A1 , или А2 ,..., или Ar ».
Событие С называется совмещением событий A1 , А.2 ,..., Ar , если оно имеет вид: «наступает и A1 , и A2 ,..., и Ar ». Объединение событий обозначают знаком `E, а совмещение — знаком C. Таким образом, пишут:
B= A1 `E A2 `E … `E Ar , C = A1 C A2 C … C Ar .
События А и В называют несовместными, если их одновременное осуществление невозможно, то есть если не существует среди исходов испытания ни одного благоприятствующего и А, и В.
С введёнными операциями объединения и совмещения событий связаны две основные теоремы В. т. — теоремы сложения и умножения вероятностей.
Теорема сложения вероятностей. Если события A1 , A2 ,..., Ar таковы, что каждые два из них несовместны, то вероятность их объединения равна сумме их вероятностей.
Так, в приведённом выше примере с бросанием двух костей событие В — «сумма очков не превосходит 4», есть объединение трёх несовместных событий A2 , A3 , A4 , заключающихся в том, что сумма очков равна соответственно 2, 3, 4. Вероятности этих событий 1/36; 2/36; 3/36. По теореме сложения вероятность Р (В )
1/36 + 2/36 + 3/36 = 6/36 = 1/6.
Условную вероятность события В при условии А определяют формулой
что, как можно показать, находится в полном соответствии со свойствами частот. События A1 , A2 ,..., Ar называются независимыми, если условная вероятность каждого из них при условии, что какие-либо из остальных наступили, равна его «безусловной» вероятности (см. также Независимость в теории вероятностей).
Теорема умножения вероятностей. Вероятность совмещения событий A1 , A2 ,..., Ar равна вероятности события A1 , умноженной на вероятность события A2 , взятую при условии, что А1 наступило,..., умноженной на вероятность события Ar при условии, что A1 , A2 ,..., Ar-1 наступили. Для независимых событий теорема умножения приводит к формуле:
P (A1 C A2 C … C Ar ) = P (A1 ) · P (A2 ) · … · P (Ar ), (3)
то есть вероятность совмещения независимых событий равна произведению вероятностей этих событий. Формула (3) остаётся справедливой, если в обеих её частях некоторые из событий заменить на противоположные им.
Пример. Производится 4 выстрела по цели с вероятностью попадания 0,2 при отдельном выстреле. Попадания в цель при различных выстрелах предполагаются независимыми событиями. Какова вероятность попадания в цель ровно три раза?
Каждый исход испытания может быть обозначен последовательностью из четырёх букв [напр., (у, н, н, у) означает, что при первом и четвёртом выстрелах были попадания (успех), а при втором и третьем попаданий не было (неудача)]. Всего будет 2·2·2·2 = 16 исходов. В соответствии с предположением о независимости результатов отдельных выстрелов следует для определения вероятностей этих исходов использовать формулу (3) и примечание к ней. Так, вероятность исхода (у, н. н, н) следует положить равной 0,2·0,8·0,8·0,8 = 0,1024; здесь 0,8 = 1—0,2 — вероятность промаха при отдельном выстреле. Событию «в цель попадают три раза» благоприятствуют исходы (у, у, у, н), (у, у, н, у), (у, н, у, у). (н, у, у, у), вероятность каждого одна и та же:
0,2·0,2·0,2·0,8 =...... =0,8·0,2·0,2·0,2 = 0,0064;
следовательно, искомая вероятность равна
4·0,0064 = 0,0256.
Обобщая рассуждения разобранного примера, можно вывести одну из основных формул В. т.: если события A1 , A2 ,..., An независимы и имеют каждое вероятность р, то вероятность наступления ровно m из них равна
Pn (m ) = Cnm pm (1 - p )n-m ; (4)