Буду электротехником
Шрифт:
Мы так и сделали. Но не успели до конца ввернуть вторую пробку; как снова — кр-рак! На этот раз искры посыпались из предохранителя.
Только теперь мы сообразили, что нужно сначала устранить неисправность в проводке и лишь после этого ввертывать новые предохранители.
«Вероятно, мы перепутали концы проводов, подключенных к люстре»,— подумал я и, отключив их, ввернул новые пробки.
Теперь они уже не перегорели, и в доме снова зажегся свет. Итак, наше предположение оказалось правильным. Пришлось тщательно проверить все соединения по схеме. При этом выяснилось, что один из проводов был подключен к люстре неверно. Ошибка была исправлена, и на этот раз люстра зажглась.
После этого задания
Кроме того, нам поручили установить звонок с питанием от сети. Вожатый сказал, что в этом случае придется использовать звонок с трансформатором. Нам рассказали, что не всякий ток может быть преобразован трансформатором. И вожатый стал нас знакомить с генераторами переменного тока. Он нарисовал устройство простейшего генератора. Это был постоянный магнит, между полюсами которого вращается проводник, согнутый в виде рамки. Концы проводника рамки присоединялись к двум изолированным друг от друга медным кольцам, по которым скользили угольные щетки. К щеткам подключали нагрузку — например, лампочку.
Мы заинтересовались, отчего же возникает ток в генераторе и почему он переменный? Вожатый начал рассказывать нам о свойствах магнита. Он принес обычный подковообразный магнит, накрыл его листом бумаги и насыпал на него немного железных опилок. Мы увидели, что опилки расположились на бумаге не как попало, а в определенном порядке. Они как бы выстроились вдоль каких-то невидимых нам линий. Эти линии называются магнитными силовыми линиями. Каждая из железных частичек, попадая в пространство между полюсами магнита (его называют магнитным полем), становится похожа на крошечную стрелку компаса.
Известно, что зачерненный конец стрелки компаса показывает на Северный полюс Земли, а светлый
конец — на Южный. Так вот, если поднести стрелку компаса к полюсам магнита, то ее зачерненный конец будет направлен на так называемый северный полюс магнита, а другой полюс магнита будет южным. В этом легко убедиться, поднеся к нему компас.
— Вот, — продолжал вожатый,— запомните, что магнитные силовые линии располагаются в пространстве по направлениям, строго зависящим от расположения полюсов магнита. Получается, что силовые линии как бы выходят из северного полюса магнита и входят в его южный полюс. Теперь вернемся к нашему генератору. Когда его рамка вращается, то благодаря замечательному явлению — электромагнитной индукции — в проводнике рамки, пересекающем магнитные силовые линии, возникает ЭДС и ток.
Если проводник движется вдоль магнитных силовых линий, то ЭДС и ток в нем не возникают. Для получения ЭДС и тока необходимо, чтобы магнитные силовые линии обязательно пересекали проводник. При этом направление ЭДС и тока строго зависит от направления движения проводника и направления пересекаемых им магнитных силовых линий. Чтобы лучше это понять, вспомните про то, как плуг пашет землю. Когда трактор тянет плуг вперед, его лемеха вонзаются в землю и отбрасывают ее на правую сторону в направлении, перпендикулярном направлению движения плуга. Подобно этому и магнитные силовые линии, пересекая проводник, как бы перемещают его свободные электроны в одну сторону (то есть создают ток) в проводнике.
Направление тока (или ЭДС) в проводнике, пересекающем магнитные силовые линии, можно определить так. Ладонь правой руки надо расположить таким образом, чтобы магнитные силовые линии как бы вонзались в нее, то есть так, чтобы рука была как бы обращена ладонью к северному полюсу магнита. При этом отведенный
Если мы воспользуемся этим правилом и попробуем определить направление тока в рамке нашего генератора, в случае, если она вращается по часовой стрелке, то увидим, что в проводнике рамки, пересекающем силовые линии вблизи северного полюса магнита, ток будет идти в направлении «от нас», а в другом проводнике, проходящем в это время около южного полюса, ток будет идти в направлении «на нас». Значит, ток будет обходить рамку по ее периметру сначала в одном направлении, а через пол-оборота рамки в обратном направлении и т. д.
Вот потому-то через лампочку и проходит переменный ток. В течение каждого оборота рамки ЭДС и ток дважды изменяют свое направление. При этом
величина тока изменяется от нуля до некоторого наибольшего значения. Оказывается, что величина тока (или ЭДС), возникающего в рамке генератора, зависит от размеров рамки и скорости ее вращения. Чем больше оборотов делает наша рамка в одну секунду, тем больше ЭДС и ток. Чем больше длина проводника рамки, пересекающего магнитные силовые линии, тем больше ЭДС и ток. Поэтому в обычных генераторах применяют не одну вращающуюся рамку, а много последовательно соединенных рамок (витков). Причем их располагают не в воздухе (как в нашем простейшем генераторе), а в неглубоких пазах ротора, набранного из тонких стальных листов. Благодаря этому число силовых линий, проходящих между полюсами магнита, увеличивается, что также приводит к увеличению ЭДС и тока генератора. Наконец, в обычном генераторе вместо постоянного магнита применяют электромагниты, расположенные по окружности его станины, что позволяет получать большие ЭДС и токи. Ток от такого генератора может питать сеть освещения.
— Но почему же лампочки в сети освещения не мигают, если переменный ток все время то появляется, то исчезает? — спросил кто-то из ребят.
— А потому,— ответил вожатый,— что изменения тока в сети происходят быстро. Раскаленная нить лампочки не успевает остыть, и мы не замечаем мельканий. Но если бы мы стали вращать ротор нашего генератора помедленнее, то мерцание лампочки стало бы заметным. За каждый оборот ротора лампочка вспыхивала бы дважды.
— То, что переменный ток (в отличие от постоянного) такой изменчивый, не является его недостатком, — продолжал вожатый. — Наоборот, именно благодаря этому такой ток можно легко трансформировать, то есть преобразовывать при помощи трансформаторов. Вот сейчас я расскажу вам о трансформаторе.
И мы узнали, что простейший трансформатор состоит из двух обмоток, расположенных на сердечнике, набранном из тонкой листовой стали.
Как же работает трансформатор? А вот как. Когда по одной из его обмоток проходит ток, то вокруг ее витков (как и вокруг любого проводника с током), а также и в сердечнике трансформатора создаются магнитные силовые линии. С увеличением тока число линий растет, и они охватывают все большее пространство вокруг обмотки. С уменьшением тока число магнитных силовых линий уменьшается, и они стягиваются к проводникам обмотки. А когда ток становится равным нулю, магнитные линии исчезают совсем. Так вот, если в обмотку подать переменный ток, то будет все время изменяться и число магнитных силовых линий и их расположение вокруг обмотки.
При этом линии будут пересекать витки другой обмотки трансформатора. Здесь мы опять сталкиваемся с явлением электромагнитной индукции. Когда магнитные силовые линии пересекают витки обмотки, в ней наводится ЭДС. Если к этой обмотке подключена нагрузка (например, лампочка), возникает ток. Сердечник трансформатора служит для увеличения числа магнитных силовых линий, создаваемых током, питающим трансформатор.
Трансформаторы бывают понижающие и повышающие.