Цивилизация классической Европы
Шрифт:
Что касается стекла, то впереди была Италия, за ней Голландия. Изготовителями и продавцами зрительной трубы стали настоящие ученые. Полученная выгода помогала им питать собственные исследования. «Личные мастерские Галилея и Шейнера. — пишет М. Дома, — пошли от первых зрительных труб, использовавшихся астрономами; у Торричелли была обширная клиентура. Отец де Рейта, отец Керубен, Пьер Борель, Озу, Гюйгенс, Гук изготовляли эти приспособления с целью получения дохода». Почти все ученые XVII века изготовляли оптические стекла. В 1-ю пол. XVIII века — то же самое. Это была, конечно, математика, но конкретная и практичная, энциклопедическая, с незавершенным разделением труда, наука же XVII века оставалась наукой глобальной. В этом пункте она не вполне порвала с традицией схоластической. Самая большая проблема была связана с качеством стекла и однородностью продукта. Известно, до какой свирепости дошла полемика Озу с Гуком и Кампани по поводу свойств и качества стекла. Гласность обеспечивалась книгами, перепиской, газетами и научными обществами.
Начиная с 1630—1640-х годов наука без зрительной трубы уже немыслима.
Кеплер в «Диоптрике» (1611) формулирует первые, еще приблизительные законы. Кеплеру принадлежит заслуга открытия a prioriпринципа настоящей астрономической трубы с перевернутым изображением, с двояковогнутым объективом и окуляром, за четыре по крайней мере года до того, как иезуит Шейнер изготовил ее первый образец. Первые зрительные трубы — позднее их назовут галилеевыми, или голландскими, трубами — были простыми морскими подзорными трубами с выпрямляющими изображение вогнутым объективом и выпуклым окуляром. Симптоматичный факт: Кеплер, опубликовавший в 1611 году принцип астрономической трубы и умерший в 1630 году, так и не узнал о существовании инструмента, которым отец Шейнер пользовался с 1615 года.
Следуя путем, намеченным Кеплером, Снеллиусом (ум. в 1626 году, открыл закон рефракции) и Кавальери (1632 год — обобщение изучения фокусных расстояний вогнутых линз), а затем руководствуясь «Диоптрикой» 1637 года (описание, кроме всего прочего, закона рефракции через призму закона синуса), Декарт дал многочисленные решения и еще больше надежд.
Христиан Гюйгенс заставил оптику превратиться не только в теорию, но и в практику. Он взялся за ключевую проблему — от ее решения зависел прогресс инструментария — за проблему хроматических аберраций. Он доказал, что аберрацию можно уменьшить, увеличивая фокусное расстояние по отношению к поверхности линзы. Кроме всего прочего, ему принадлежит заслуга создания первой большой воздушной зрительной трубы (отметьте, что объектив и окуляр не были заключены в общую трубу). Долгое время техника забегала вперед теории. Начиная с конца XVII века и в течение всего XVIII века — и это тоже симптоматично — практика остановилась в ста шагах позади теории: после завершения геометрической оптики благодаря Ньютону, Эйлеру, Д’Аламберу и Клеро. Решительный шаг был сделан в самом конце века, когда в августе 1683 года Христиан и Константин Гюйгенсы начали использовать свою машину для изготовления линз. Первые пробы были неудовлетворительны. Хорошие результаты получились только через несколько лет, и тогда это был штурм фокусных расстояний, о которых ручная работа (единственно известная XVII веку) не позволяла даже мечтать: 34 фута, вскоре 85, 120, 170 и 210 футов. Гюйгенсы обозначили поворот к созданию приборов, усиливающих зрение.
Четыре-пять лет спустя после голландской трубы, этой простой подзорной трубы, в 1612–1618 годах «были изготовлены и опробованы под разными названиями первые модели сложных микроскопов». Ничтожный, бесконечно дебатируемый вопрос об аналоге породил чудовищную библиографию. Правдоподобная традиция приписывает авторство первых микроскопов братьям Янсен из Мидделбурга в Зеландии. Жан дю Пон де Тард, каноник из Сарла, рассказывая о визите к Галилею в 1615 году, описывает новые инструменты, позволяющие видеть «объекты, которые весьма близки к нам, но которые мы не можем узреть по причине их малости». Речь, конечно же, шла о микроскопе. Поначалу два вида техники были абсолютно неразъединимы, Морис Дома это прекрасно доказал. В знаменитых каталогах 1625 года Корез объединяет оба плана: «Чем более близок объект, тем более следует вытянуть трубу, и тогда объект покажется крупным. Таким образом, клещ кажется таким же крупным, как горошина». До 1624 года никаких материальных следов. Первые приборы Метиуса, Янсена (возможно, первый), Дреббеля, Галилея известны только по описаниям.
Прогресс микроскопа шел медленнее, чем у телескопа; 15 лет против полувека. Декарт задумал микроскопы теоретически с гиперболическими линзами, одна из которых должна была достигать по меньшей мере человеческого роста, но техника XVII века была совершенно неспособна реализовать подобное. Это отставание имеет две причины. Меньший спрос: интеллектуальная революция XVII века начиналась с астрономической сферы. И особые технические трудности. Как изготовление часов остановилось перед миниатюризацией, поскольку механика начала XVII века была еще груба, так и фабрикация небольших линз встретила трудности. При увеличении от ста до двухсот раз посредственные линзы первых микроскопов могли давать лишь смутное изображение. Хроматическая аберрация доставляла гораздо больше неудобств, чем при астрономических наблюдениях, а отсутствие диафрагмы не позволяло уменьшить сферическую аберрацию. Понадобились 50 лет и прогресс аппаратуры, чтобы одолеть недоверие, которое философы унаследовали от схоластической традиции, наперекор этой второй данности материи.
В сущности, если в революции лидировала астрономия, то успех астрономической трубы должен был обеспечить успех микроскопа. Морис Дома относит примерно к 1665-му, а то и к 1660 году дату бесспорного рождения микрографии, в связи с опубликованием «Микрографии» Гука. Шаг был сделан. Прошло время курьезов с клещом, крупным, как горошина. Шаг за шагом после Гука голландец Сваммердам (1637–1680) представляет в 1669 году свою знаменитую «Historia Insectorum generalis» («Всеобщую историю насекомых»), а в 1671-м Марчелло Мальпиги (1628–1694) направляет в Королевское общество свои первые наблюдения. Известно,
Начиная с 1660 года сложные микроскопы поступают в свободную продажу в Англии за 3–6 фунтов стерлингов. Одна из самых больших удач приписывается итальянцу Эстачио Дивини (1620–1695). «Журналь де саван» в номере от 1668 года констатировала: «Микроскоп, окуляр которого был составлен из двух плоско-выпуклых линз, соединенных плоскими сторонами». Высотой 42 см, он давал в четырех копиях увеличение от 41 до 43 раз. Безусловное преимущество, представляющее объекты плоскими, а не изогнутыми, крупный прогресс в точности изображения бесконечно малого. Благодаря технике Дивини Мальпиги преуспел в своих первых опытах по микроскопической анатомии. Итальянская техника была верна крупным машинам. С братьями Гюйгенсами голландская техника делает выбор в пользу небольших объективов. Именно с приборами этого образца работал Роберт Гук. Английскому оптику Джону Маршаллу принадлежит заслуга (1720) приспособить к таким приборам возвратный винт с гайкой, которым Гевелий (Иоганн Гевель, 1611–1687), великий данцигский астроном, успел снабдить зрительную трубу. Гевелий раскрыл это в своей сопровожденной чертежами «Machina coelestis» («Небесной машине»), опубликованной в Данциге в 1673 году. Исследования двух бесконечностей шли рука об руку.
Беспорядочное усиление линз, бинокулярное видение (отец Керубен, Петрус Патронус — Милан, 1722) — техника торопливо испытывала разные пути, многие из которых оказались неверными. Прогресс стекольной техники также позволил на время вернуться к более простым устройствам, дающим результаты, более легкие для интерпретации. Левенгуку пришлось делать почти все наблюдения с простым однолинзовым, снабженным возвратным винтом микроскопом весьма большой точности, обеспеченной за счет слабого увеличения (в 40–60 раз). Благодаря Йохану Йостену ван Мушенбруку в конце XVII века в Голландии простой микроскоп обретает диафрагму, а Хартсукер с 1689 года («Диоптрическое эссе» было опубликовано в 1694 году) упоминает барабанный цилиндр с винтом, ставший известным в конечном счете как барабан Вильсона. Морис Дома повторное изобретение микроскопа на стеклянных шарах в Англии и Голландии относит к 1669–1676 годам.
По мере того как усложнялись приборы, увеличивались и задержки с применением и даже эффективной экспериментальной реализацией открытия. Так было с приборами на отражении. Здесь мы снова обнаруживаем практическую взаимосвязь двух бесконечностей: телескопа и микроскопа на отражении.
Теория телескопа более чем на столетие обогнала его практическую реализацию — еще один знак более быстрого развития наук, нежели техники, начиная с 1630—1640-х годов. Кавальери, Мерсенн, Цукки изложили его принцип примерно в 30-е годы. Джеймс Грегори в 1663-м разработал теорию инструмента. Ривз потерпел провал в ее реализации, и Ньютон представил свой аппарат Королевскому обществу в феврале 1672 года. Предыстория не имела практического значения: телескопическая астрономия, астрономия высших планет и особенно звезд оставалась делом завтрашнего дня, когда гениальный шлифовщик зеркал Уильям Гершель (1738–1822) спустя два с половиной века возобновил осторожные попытки старого Тихо Браге. «Несколько телескопов, — пишет Дома, — были изготовлены оптиками где-то после 1720 года, но пришлось дождаться, пока Эдвард Скарлетт, — ок. 1691–1743, — найдет способ делать хорошие зеркала, чтобы производство обрело некоторый размах».
Зеркала были самой большой проблемой. В конечном счете это была проблема металлургическая. Долгое время считалось, что успех Ньютона и Гука крылся в составе используемой бронзы. Молино безуспешно опробовал 450 вариантов различных сплавов. При свойственном началу XVIII века состоянии химии металлов прогресс в этой области могло обеспечить лишь достаточное количество опытов, т. е. в конечном счете интенсивность спроса. Другая проблема — шлифовка. Необходимого уровня мастерства достигало лишь незначительное число рабочих. Отсюда медленный переход, индуктивное время — 60 лет, от изобретения до стадии воплощения. Наконец, астрономия XVII — начала XVIII века — это планетарная астрономия близкой Солнечной системы. Всемирное тяготение, занимавшее все умы, — потребуется столетие, чтобы это повторное введение иррационального и таинственного было освоено и поглощено механической наукой, — было мыслью планетарной. Плохо оправившийся от разрушения старого античного космоса нововременной дух отчаянно уцепился за свою солнечную систему. Остальное философский XVIII век решительно предоставил метафизическим изысканиям христианина, подобного Паскалю. Именно потому, что «вечное безмолвие бесконечных пространств» пугало, вопрос был отложен. Астрономия телескопа — это астрономия звезд, т. е. бесконечных пространств. астрономия застывшей неизвестности механики Лапласа. Окончательная доводка телескопа была изначально задержана существенным ментальным несоответствием». При наличии более скромной, более экономичной, более верной зрительной трубы что мог дать метафизический телескоп? Медленное становление телескопа начинается после 1770–1780 годов, благодаря возможностям, предоставленным американской платиной (холоднокатаный и легко полируемый сплав платины, олова и красной меди), и растущим запросам звездной астрономии. Для рефлекторного микроскопа, задуманного Декартом, детализированного Ньютоном, описанного в 1759-м Бенджаменом Мартеном, в 1769-м — Сельва, начинается второй этап.