Чтение онлайн

на главную - закладки

Жанры

Эпистемология классическая и неклассическая
Шрифт:
Априорное знание как знание форм сознания

Некоторые философы не были согласны с Платоном в том, что для объяснения особого характера математического знания необходимо предполагать существование особого мира бестелесных идей. Достаточно согласиться с тем, считали эти философы, что в математике ум, сознание имеют дело сами с собой и с результатами своей деятельности, не зависимой от опыта. Ведь то, что породило сознание, бессмысленно проверять с помощью опыта. Я, например, могу вообразить существо с головой человека и телом крокодила. Если я знаю, что это только продукт моего воображения, существующий лишь в моем сознании, я понимаю, что опыт не может ни подтвердить, ни опровергнуть это представление. Все те качества, которые я припишу этому вымышленному существу, будут свойственны ему совершенно бесспорно. Однако в данном случае сам вымышленный мною образ стал возможен только потому, что я встречал в опыте как людей, так и крокодилов (или по крайней мере видел крокодилов в кино или по телевизору). Но можно себе представить такую деятельность сознания, считают эти философы, когда оно не перерабатывает вообще никаких

данных опыта, а только имеет дело с самим собою. В этом случае, согласно их точке зрения, мы имеем математическое знание. Так, например, великий немецкий философ Кант высказал мысль о том, что от рождения сознанию человека свойственны некоторые «чистые» (т. е. не зависимые от опыта) формы пространства и времени. Сосуд не зависит от того, что в него наливается. В один и тот же сосуд я могу наливать воду, молоко, вино. Так же обстоит дело и с формой. Форма не зависит от того, с каким содержанием она соединяется. Форма пространства не зависит от того, с какими вещами я имею дело в опыте. Форма времени не зависит от того, какие временные события даны мне в моем опыте. Если я изучаю не то, чем наполняется сосуд, а то, как устроен сам сосуд, т. е. если я имею дело не с содержанием, а с формой знания, мое знание будет априорным. Ум, действующий в априорной сфере «чистого пространства», конструирует геометрические фигуры и порождает математическое знание. Априорная форма «чистого времени» предполагает возможность бесконечного повторения одной и той же операции. Эта возможность бесконечного повторения порождает мир арифметических чисел. Из этого мира при помощи правил логики можно конструировать систему алгебры.

Априорное знание как аналитическое знание

Однако были и другие философы, которые не соглашались с такого рода объяснениями. Да, говорили эти философы, знание в математике, действительно, довольно специфично, поскольку внеопытно. Но для объяснения этой особенности вовсе не обязательно предполагать существование особого бестелесного мира идей или врожденного мира сознания, поскольку наша жизнь, обычная практика и развитие науки заставляют с большим подозрением относиться к такого рода предположениям. Специфику знания в математике можно объяснить гораздо проще. Все дело в том, что в действительности математическое знание не является… знанием.

Вот как рассуждали эти философы.

Все наши знания мы выражаем обычно с помощью языка. Это могут быть знания о нашем обычном опыте («Там находится большой трехэтажный дом», «Листья этого дерева уже облетели»). Это могут быть знания о законах природы («Каждое тело, не подвергаемое воздействию извне, покоится или движется равномерно и прямолинейно»). Но язык выражает не только знания. Наши высказывания могут содержать приказы («Огонь!»), просьбы («Закройте, пожалуйста, окно»), обещания («Клянусь говорить правду и только правду»). Есть однако еще одна группа утверждений, которые не передают ни знаний о мире, ни просьб или обещаний. Они выражают значения слов данного языка. Таково, например, высказывание «Холостяк — это неженатый мужчина». Для того, чтобы убедиться в его истинности, вовсе не нужно изучать холостяков с целью выяснения, все ли они, действительно, являются неженатыми. Если вы понимаете смысл слова «холостяк» в русском языке, вы согласитесь с тем, что холостяк — это в самом деле неженатый мужчина. Истинность этого высказывания, таким образом, определяется независимо от опыта. Такие высказывания получили название аналитических. Особенность такого рода высказываний состоит в том, что они выражают не знания, а характер того средства — языка, — которое мы используем для выражения любых знаний. Ряд философов предположили, что законы логики (закон тождества, закон противоречия и закон исключенного третьего)· тоже являются такого рода аналитическими высказываниями. Затем эти философы попытались показать, что все математические утверждения (начиная с утверждений арифметики) можно чисто логическим путем вывести из этих логических законов. Если бы этот замысел удался, можно было бы с определенным основанием считать, что математика сводится к логике, а поскольку логика состоит лишь из аналитических высказываний, то и математика — это ни что иное, как система такого рода высказываний. В этом случае априорный характер математики можно было бы связать не с существованием особого царства нематериальных идей и не с врожденными характеристиками нашего сознания, а попросту с логической структурой языка.

Бесконечность в математике, парадоксы и законы логики

Однако реальный характер познания в математике оказался не столь простым. Для многих разделов математики существенным является оперирование с бесконечностью (бесконечность натурального ряда чисел в арифметике, бесконечные переходы в интегральном и дифференциальном исчислении и т. д.). Между тем, вывести утверждения о бесконечности из простых высказываний формальной логики оказалось невозможным. В начале XX столетия выяснилось, что во многих случаях оперирование математической бесконечностью ведет к парадоксам (неразрешимым противоречиям).

Представьте себе, что вы работаете в гардеробе театра. Пришедшие на спектакль зрители сдали вам свои пальто и получили от вас номерки. Ясно, что каждому сданному пальто соответствует свой номерок. Не может быть, чтобы количество пальто и номерков не совпадало. В математике совокупность предметов, объединяемых по некоторому признаку, называют множеством. В данном случае мы имеем два множества: пальто и номерков. Когда каждому элементу одного множества можно поставить в соответствие один и только один элемент другого множества, мы говорим о том, что эти два множества равномощны (на более привычном нам, хотя и менее строгом с математической точки зрения языке, мы можем сказать, что в этом случае два множества содержат равное количество элементов). Если же мы не на все пальто выдавали номерки, то, разумеется, равномощности двух множеств не получится: одно из них (в данном случае множество пальто) будет «мощнее» другого (множества номерков). Одно множество

может быть частью другого. Так, например, множество всех мужчин данного города является частью множества всех его жителей. Во всяком случае, когда мы имеем дело с конечными множествами, всегда легко можно установить отношения между множествами: являются ли они равномощными или неравномощными или же одно из них является частью другого.

Но вот когда мы переходим к множествам бесконечным, дело основательно запутывается.

Представьте себе множество всех натуральных чисел: 1,2,3,4,5,6, 7,8…. Ясно, что это множество бесконечно. А теперь представьте себе множество всех четных чисел: 2,4,6,8…. Ясно, что и это множество тоже бесконечно. Не менее ясно и то, что четные числа составляют лишь часть всех натуральных: ведь четным является не всякое натуральное число, наряду с четными существуют и нечетные натуральные числа. Если одно множество составляет часть другого, разумеется, оно уступает по мощности тому множеству, в которое оно входит. Значит, мощность всех четных чисел гораздо меньше мощности всех натуральных чисел. Но теперь давайте проделаем такую процедуру. Сопоставим каждый элемент множества всех четных чисел с каждым элементом всех натуральных чисел. Иными словами, поставим в соответствие числа 2 и 1, 4 и 2, 6иЗ, 8 и 4, 10 и 5 и т. д. Ясно, что каждому элементу одного из этих множеств мы можем поставить в соответствие один и только один элемент другого. Значит, два множества равномощны. Но ведь этого же не может быть, поскольку одно из них только часть другого! Мы пришли к парадоксу, неразрешимому противоречию.

При действиях с бесконечными множествами такого рода парадоксов возникает немало. Для их разрешения предлагались разные средства, в том числе связанные с новым пониманием бесконечности в математике не как законченного, «данного» множества, а как процесса, как возможности бесконечного повторения некоторых элементарных операций. Самое интересное состоит в том, что при подобном понимании бесконечности приходится не только иначе понять целый ряд разделов математики, но и отказаться при оперировании с бесконечностью от одного из основных логических законов: закона исключенного третьего (который гласит, что каждое из двух утверждений, противоречащих друг другу — например, «Это моя книга» и «Это не моя книга» — является либо истинным, либо ложным). Выходит, что приходится внести существенные поправки в традиционное понимание априорности математического знания как чего-то совершенного, неизменного и не зависящего от развития познания. Получается, что могут меняться наши представления о принципиальных понятиях математики, что мы иногда вынуждены пересматривать старые результаты и даже отказываться от некоторых из них. Оказывается, что даже применение основных логических законов, которые лежат в основании всей математики, зависит от той предметной области, с которой мы имеем дело (закон исключенного третьего действует в отношении конечных множеств и неприменим в случае бесконечных процессов).

Так возникает мысль, что, по видимому, математика все же каким-то образом связана с опытом, хотя эта связь очень сложна и отлична от связи с опытом остальных видов знания.

Неэвклидовы геометрии и связь геометрии с опытом

К этой же мысли приводит размышление и над другими событиями, случившимися в математике в XIX–XX столетиях.

Как вы знаете, изучаемая вами в школе геометрия (называемая эвклидовой, по имени великого древнегреческого математика Эвклида, который сформулировал ее основные положения) исходит из ряда аксиом и постулатов. Один из постулатов эвклидовой геометрии гласит: если вне данной прямой дана точка, то через нее можно провести только одну прямую, параллельную данной. В XIX веке великий русский математик Лобачевский поставил вопрос: а что, если отказаться от этого постулата и заменить его другим, согласно которому таких прямых будет не одна, а множество? Можно ли в этом случае создать иную, неэвклидову геометрию со своими теоремами? Лобачевский построил такую неэвклидову геометрию, которую он назвал «воображаемой», так как считал, что та геометрия, которая соответствует нашим представлениям о пространстве, может быть только эвклидовой. После Лобачевского и другие математики создали несколько систем неэвклидовой геометрии. Но в XX столетии, когда Эйнштейном была создана теория относительности, описывающая физическую реальность и проверяемая на опыте, оказалось, что именно неэвклидова геометрия соответствует физике нашего мира. Выясняется, что геометрия тоже связана с опытом. Эвклидова геометрия хорошо описывает наш обычный опыт. А в тех случаях, когда мы имеем дело с Вселенной в целом, наиболее подходящей для описания характеристик пространства будет неэвклидова геометрия.

Гипотезы, опровержения и подтверждения в математике

Сейчас многие ученые приходят к выводу, что нужно отказаться от понимание математики как чисто дедуктивной науки, в которой нет места для выдвижения разного рода предположений (гипотез), их сопоставления с определенного рода опытом, уточнения и изменения этих гипотез, а, возможно, и их опровержения (что характерно для всех остальных наук). Англо-венгерский философ Лакатос изучал под этим углом зрения историю математики и пришел к интересным выводам на примере доказательств, опровержений и уточнений так называемой стереометрической теоремы, относящейся к соотношению между числами сторон, вершин и граней многогранника. Лакатос показал, что история этой теоремы — это история выдвижения разных предположений, которые затем опровергались приводимыми новыми примерами, уточнялись, формулировались снова и т. д. В существенных чертах этот процесс очень напоминает то, что делается во всех опытных науках.

Таким образом, математика представляет собой особый вид знания. Если и существует связь математических знаний с опытом (а, невидимому, это так), то эта связь очень сложная и не всегда очевидная. Вместе с тем математика всегда играла исключительную роль в развитии науки. Большинство ученых и философов считали, что настоящее, т. е. точное знание о природе, обществе и самом человеке может быть выражено только на математическом языке. Так ли это? Об этом мы узнаем в дальнейших разделах.

Поделиться:
Популярные книги

Волхв

Земляной Андрей Борисович
3. Волшебник
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волхв

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Я уже князь. Книга XIX

Дрейк Сириус
19. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я уже князь. Книга XIX

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Род Корневых будет жить!

Кун Антон
1. Тайны рода
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Род Корневых будет жить!

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Аргумент барона Бронина

Ковальчук Олег Валентинович
1. Аргумент барона Бронина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аргумент барона Бронина

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Башня Ласточки

Сапковский Анджей
6. Ведьмак
Фантастика:
фэнтези
9.47
рейтинг книги
Башня Ласточки

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Студент из прошлого тысячелетия

Еслер Андрей
2. Соприкосновение миров
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Студент из прошлого тысячелетия

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3