Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по гравитации
Шрифт:

h'

=

h

1

2

g

,

A

gA,

.

(6.3.4)

Положим для удобства -A= и запишем уравнение через g вместо h следующим образом:

g'

=

g

+

g

,

+

g

,

+

g

,

.

(6.3.5)

Тогда

наша задача становится следующей: найти выражение для функционала F от метрики g такое, что при инфинитезимальных преобразованиях, описываемых соотношениями (6.3.5), которые меняют тензор g на тензор g', функционал F не меняется в первом порядке малости по при любом (x). Методы для решения уравнений, аналогичных исследуемому нами, были разработаны математиками1, работающими в дифференциальной геометрии (фактически очень близкая задача решается в дифференциальной геометрии), итак мы будем предполагать, как и хорошо образованные венерианские физики, что книги, дающие нам намёки на то, как приступить к решению, являются доступными.

1 См., например, книгу Веблена [Vebl 27].

Фактически, можно проверить, что преобразование, определяемое соотношением (6.3.5), есть преобразование тензорного поля при инфинитезимальном преобразовании координат x=x'+. Однако, мы будем продолжать играть в нашу игру и попытаемся вывести наши результаты как венериане, не осознающие никакой геометрической интерпретации. Конечно, мы будем возвращаться назад и обсуждать геометрическую точку зрения при обсуждении точки зрения Эйнштейна.

Теперь приступим к нахождению желаемого инвариантного выражения для F. Для того, чтобы найти это выражение, полезно определить матрицу, которая обратна g, используя верхние индексы вместо нижних, что оказывается в данном случае предпочтительным, т.е.

g

g

=

,

(6.3.6)

где теперь

– правильный символ Кронекера, который равен 1, если =, и нулю, если /=.

Обратная к матрице A'=A+B, если B - инфинитезимальна, задаётся следующим выражением:

1

A'

=

1

A

1

A

B

1

A

+

1

A

B

1

A

B

1

A

– … .

(6.3.7)

Так как вектор инфинитезимален, мы можем легко построить тензор, обратный к тензору g', согласно правилу, выраженному в соотношении (6.3.7)

g'

=

g

,

g

,

g

g

g

g

,

+ … .

(6.3.8)

Теперь

исследуем кратко один инвариант, который может быть легко найден, для того, чтобы понять используемые методы, а в следующем разделе построим более сложный инвариант, который приведёт нас к нашей полной теории.

Рассмотрим, как меняется определитель матрицы, если мы слегка меняем матрицу. Мы используем следующее выражение для определителя:

Det A

=

exp(Tr log A)

.

(6.3.9)

Мы не будем останавливаться здесь для обсуждения доказательства такого равенства;1 однако для того, чтобы показать, что оно выглядит разумным, мы могли бы заметить, что это утверждение становится тривиальным справедливым утверждением в случае, если матрица записала в диагональном виде:

Det A

=

A

A

A

=

=

exp(

log A

+

log A

+…

)=

exp(Tr log A)

.

(6.3.10)

1 Это равенство является простым следствием из утверждения о существовании матричного логарифма невырожденной матрицы, которое доказано, например, в книгах [Гант 88*, Белл 76*]. (Прим. перев.)

Теперь мы применяем правило, выраженное соотношением (6.3.9), для вычисления определителя матрицы (A+B), где B - инфинитезимальная матрица. Нам необходимо вычислить матричный логарифм матрицы A+B; соответствующее разложение имеет вид

Det

A

1

+

1

A

B

=

Det A·Det

1

+

1

A

B

=

=

Det A

exp

Tr

log

1

+

1

A

B

=

=

Det A

exp

Tr

1

A

B

.

(6.3.11)

Теперь мы используем это правило для того, чтобы вычислить определитель g' и взять логарифм результирующего выражения

log(-Det g')

=

log(-Det g)

+

2

,

+

g

,

g

.

(6.3.12)

Произведение матриц g в последнем члене может быть связано с определителем следующим образом:

g

,

g

=

[log(-Det g)]

,

(6.3.13)

Поделиться:
Популярные книги

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Ученик

Первухин Андрей Евгеньевич
1. Ученик
Фантастика:
фэнтези
6.20
рейтинг книги
Ученик

Бастард Императора. Том 4

Орлов Андрей Юрьевич
4. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 4

Эволюционер из трущоб. Том 5

Панарин Антон
5. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 5

Вперед в прошлое 10

Ратманов Денис
10. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 10

Волхв пятого разряда

Дроздов Анатолий Федорович
2. Ледащий
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Волхв пятого разряда

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Господин следователь 6

Шалашов Евгений Васильевич
6. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь 6

Тепла хватит на всех

Котов Сергей
1. Миры Пентакля
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Тепла хватит на всех

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0