Фейнмановские лекции по гравитации
Шрифт:
7.6. Кривизна в двух и четырёх измерениях
Инвариантной величиной, которая характеризует геометрию способом, не зависящим от специального выбора системы координат, является кривизна. Очень просто представить себе смысл кривизны, когда мы рассматриваем двумерную поверхность: плоское неискривлённое пространство, такое как плоскость, или искривлённое пространство, такое как кривая поверхность. Хотя в нашей последующей работе нам понадобится работать с кривизной аналитически, сейчас следует немного поработать с двумерной геометрией, которую мы можем очень просто представить; определения кривизны в более высоких измерениях есть точные аналоги определения кривизны поверхности.
В
(ds)^2
=
g
(dx)^2
+
2g
dx
dy
+
g
(dy)^2
.
(7.6.1)
Хотя очевидно, что три функции gab включены в это выражение, инвариантная геометрия определяется только одной функцией координат; оказывается, что мы имеем определённую свободу в выборе координат, например, мы можем сделать их ортогональными; мы обладаем достаточной свободой для того, чтобы наложить два условия на функции gab, для этого у нас есть две функции, с помощью которых мы можем делать координатные преобразования. В частности, всегда можно выбрать координаты таким образом, что
1.
g
=
0,
2.
g
=
g.
Это означает, что для целей изучения геометрических измерений на двумерной поверхности наиболее общим выражением для длины дуги является следующее соотношение:
(ds)^2
=
f(x,y)
(dx)^2
+
(dy)^2
.
(7.6.2)
С одной точки зрения, функция f(x,y) представляет собой множитель, на который меняются линейки, когда мы движемся по поверхности. С другой точки зрения, она очевидно определяет кривизну пространства.
Забавный пример физической ситуации, которая в точности соответствует этим геометриям, придуман одним из студентов Робертсона. Представим себе, что человек делает измерения с помощью линейки на раскалённой пластине, которая в некоторых местах горячее, чем в других. Линейка растягивается или сжимается в зависимости от того, где делаются измерения, в более горячих или более холодных областях на плоскости; очевидно, что соответствующая функция f(x,y) определяется локальной температурой и коэффициентом теплового расширения линейки.
Локальная кривизна поверхности в точке может быть определена с помощью некоторого математического критерия, включающего в себя предельный случай измерений, проделываемых со всё более и более маленькими объектами. Мы могли бы, например, выбрать для сравнения отношения длины окружности к радиусу, отношения площадей кругов к квадратам радиусов; для случая сферических поверхностей эти отношения отличаются от тех, которые получаются на плоской поверхности, на множители (sin )/, где - отношение измеряемого радиуса к радиусу сферы. В пределе всё меньших и меньших кругов эта величина отличается от единицы на величину, пропорциональную площади круга. Этот коэффициент пропорциональности есть 1/R^2 для сферы (умноженный на 3). Это число (коэффициент, характеризующий изменение площади при отклонении длины окружности от 2) подходит для описания локальной кривизны, известной как Внутренняя Кривизна или также как Гауссова Средняя Кривизна Площади сферической поверхности, поскольку математика всех этих понятий восходит к Гауссу.
Мы можем легко рассмотреть другие кривые поверхности. Например, легко увидеть, что цилиндрическая
Эти поверхности описываются двумя линейными параметрами, радиусами кривизны в двух перпендикулярных плоскостях. В этом случае внутренняя кривизна определяется соотношением 1/(RR). Эта величина положительная, если поверхность параболическая, или отрицательная, если поверхность - гиперболический параболоид. Мы видим, что эта величина даёт правильное значение кривизны для специальных случаев сферических поверхностей и цилиндрических поверхностей; для сферы оба радиуса равны; для цилиндра один радиус равен бесконечности.
Кривизна четырёхмерного пространства будет определяться аналогичным математическим критерием. Тем не менее, мы едва ли можем ожидать, что мы окажемся в состоянии мысленно построить такие простые картинки и мы должны будем полагаться главным образом на аналитические методы, поскольку наша интуиция вероятно будет нас обманывать. Очень трудно думать о четырёхмерном пространстве специальной теории относительности, даже обладая хорошей интуицией, я считаю, что очень трудно наглядно представить то, что достаточно близко к нему, поскольку имеется знак минус в сигнатуре метрики. А представить себе такое пространство с кривизной было бы ещё труднее. Кривую двумерную поверхность удобно представлять, как кривую поверхность, погружённую в трёхмерное пространство. Но аналогичное описание для кривизны трёхмерного пространства требует концептуального погружения в пространство с шестью измерениями, а проделывая эту процедуру для четырёх измерений, мы должны думать о четырёхмерном пространстве, которое погружено в десятимерный мир. Таким образом, кривизна пространства-времени значительно сложнее, чем кривизна поверхности.
7.7. Число величин, инвариантных под действием преобразований общего вида
В четырёхмерной геометрии имеются двадцать коэффициентов, которые описывают кривизну способом, аналогичным тому, которым одна величина 1/(RR) описывает внутреннюю кривизну двумерной поверхности. Эти двадцать величин определяют физически значимые свойства тензора g то же, что мы должны сделать, так это упростить тензор g' разумным выбором координат, таким же способом, каким стало возможным определить геометрию двух измерений одной функцией f(x,y) в соотношении (7.6.2).
Мы видели, что вообще говоря, мы не можем устранить гравитационные поля суперпозицией ускорений, за исключением одной точки. Так как кривизна может быть задана точным определением того, что происходит в инфинитезимальной области вокруг заданной точки, целесообразно изучить соответствующим образом в какой степени может быть упрощён тензор g. По аналогии с двумерным случаем мы можем полагать, что возможно выбрать координаты (называемые нормальными координатами Римана) таким образом, что пространство вокруг этой точки - плоское, за исключением членов второго порядка малости от расстояния до этой точки. Другими словами, кривая поверхность отрывается от плоскости, которая является касательной к этой поверхности, причём отклонение поверхности от плоскости характеризуется величиной, которая квадратична от значений координат, измеряемых от точки касания; мы ожидаем, что аналогичная ситуация имеет место в четырёхмерном пространстве.