Избранные научные труды
Шрифт:
С помощью квантовой механики мы овладели обширной областью исследований; важнее всего, что мы оказались в состоянии описать в деталях многие, физические и химические свойства элементов. В самое последнее время стало возможным объяснить даже радиоактивный распад, причём эмпирические вероятностные законы, управляющие этими процессами, оказались прямыми следствиями характерного для квантовой теории статистического способа рассмотрения. Это объяснение является особенно поучительным примером как плодотворности, так и формального характера волновых представлений. С одной стороны, здесь мы имеем дело с вопросом, который прямо примыкает к обычным представлениям о движении, поскольку вследствие большой энергии испускаемых атомным ядром частиц их пути можно наблюдать непосредственно. С другой стороны, обычные механические представления приводят нас в тупик при описании самого процесса распада, поскольку силовое поле, окружающее ядро, согласно этим представлениям должно препятствовать удалению частиц из ядра. В квантовой механике положение иное; здесь силовое поле является барьером, от которого большая часть волн отражается, но для небольшой части этих волн барьер прозрачен. Та доля волн, которая проникает сквозь барьер за определённое время, даёт нам меру вероятности распада ядра за это время. Вряд ли можно осветить более ярко, как трудно
В квантовой теории света встречаем подобное же отношение между нашими наглядными вспомогательными средствами и вычислением вероятности осуществления светом наблюдаемых действий. В соответствии с классическими электромагнитными представлениями свету нельзя приписывать собственно материальную (вещественную) природу, хотя наблюдение действия света всегда связано с переходом части энергии и импульса к материальным частицам. Ощутимое преимущество квантовых представлений о свете состоит главным образом в том, что они помогают учитывать сохранение энергии и импульса. Вообще характерной чертой квантовой механики является возможность использования законов сохранения энергии и импульса, несмотря на ограничение классических и электромагнитных представлений. Эти законы в известном смысле составляют противоположность лежащим в основе теории атома допущениям о постоянстве материальных частиц, которые, несмотря на отказ квантовой теории от представлений о движении, строго сохраняются. Фактически необходимость принципиально статистического способа описания атомных явлений вытекает из более детального изучения сведений, которые мы могли получить о них прямыми измерениями, и смысла, который можно приписать в связи с этим основным физическим понятиям.
С одной стороны, мы должны думать, что понимание этих понятий всецело связано с обычными физическими представлениями. Так, например, любое указание на пространственно-временные соотношения основано на постоянстве элементарных частиц, так же как законы сохранения энергии и импульса являются основой любого использования понятий энергии и импульса. С другой стороны, постулат неделимости кванта действия является для классических представлений совершенно чуждым элементом, требующим при измерениях не только конечного взаимодействия между объектом и измерительным прибором, но и известной свободы при учёте этого взаимодействия. Вследствие этого каждое измерение, преследующее цель упорядочить элементарные частицы в пространстве и времени, приводит к отказу от познания обмена энергией и импульсом между частицами и масштабами и часами, использованными в качестве системы отсчёта. Подобным же образом любое определение энергии и импульса частиц приводит к отказу от прослеживания их в пространстве и во времени. Следовательно, вытекающее из самой сути измерения применение классических понятий в обоих случаях заранее связано с отказом от строго причинного описания. Такие рассуждения непосредственно ведут к установленному Гейзенбергом соотношению неопределённости, положенному им в основу обстоятельного исследования непротиворечивости квантовой механики. Принципиальная неопределённость, с которой мы здесь встречаемся, является, как показал автор, прямым выражением абсолютного ограничения применимости наших наглядных представлений при описании атомных явлений. Оно выявилось в кажущейся дилемме, с которой мы встретились в вопросе о природе света и материи.
Этот вынужденный отказ от наглядности и причинности при описании атомных явлений, возможно, будет воспринят как крушение надежд, возлагавшихся вначале на теорию атома. Тем не менее с точки зрения современных взглядов мы должны приветствовать этот отказ как существенный прогресс нашего познания. Речь не идёт об отказе от общих основных принципов естествознания в тех областях, в которых мы с полным правом рассчитываем на их поддержку. Открытие кванта действия не только указывает естественные границы классической физики; оно приводит естествознание в совершенно новое состояние, когда старый философский вопрос об объективном существовании явлений независимо от наших наблюдений ставится в совсем иной плоскости. Как мы видели, каждое наблюдение требует вмешательства в ход процесса, что подрывает основу причинного описания. Определённые самой природой границы возможности говорить о самостоятельных явлениях находят, по-видимому, свое выражение в формулировке квантовой механики. Однако её нельзя воспринимать как препятствие для дальнейшего развития; мы должны лишь быть подготовленными ко всё более глубокому абстрагированию от обычных требований непосредственной наглядности в описании природы. Новых сюрпризов можно ожидать прежде всего в той области, где встречаются квантовая механика и теория относительности, поскольку здесь на пути полного слияния результатов, добытых этими теориями, лежат не решённые ещё трудности.
Я рад случаю подчеркнуть, хотя и в конце доклада, большое значение созданной Эйнштейном теории относительности для нового развития физики в смысле её освобождения от требований наглядности. Теория относительности научила нас, что целесообразность требуемого нашими чувствами резкого разделения пространства и времени основана только на том, что обычно встречаемые скорости малы по сравнению со скоростью света. Можно говорить, что открытие Планка подобным же образом привело к пониманию того, что целесообразность причинной точки зрения обусловливалась малостью кванта действия по сравнению с теми действиями, которые встречаются в обычных явлениях. В то время как теория относительности напоминала о субъективном, существенно зависящем от точки зрения наблюдателя характере всех физических явлений, вытекающая из квантовой теории неразрывная связь атомных явлений с их наблюдением, при использовании наших средств выражения, принуждает нас к проявлению такой же осторожности, как и в психологических проблемах, где нас беспрестанно подстерегает трудность разграничения объективного содержания от наблюдающего субъекта. Не опасаясь быть ложно понятым, будто я намерен ввести некоторую мистику, не имеющую ничего общего с духом науки, хочу указать здесь на своеобразный параллелизм, существующий между возобновлённой дискуссией о реальности причинных законов и издавна продолжающейся дискуссией о свободе воли. В то время как чувство свободы воли господствует в духовной жизни, требование причинности лежит в основе упорядочения ощущений. Вместе с тем в обоих случаях имеем некоторую идеализацию, естественные границы которой можно изучить более детально и которая означает, что чувство свободы воли и требование причинности одинаково незаменимы в отношениях между субъектом и объектом; это составляет ядро проблемы познания.
В таком представительном собрании естествоиспытателей 1 прежде, чем закончить, необходимо затронуть вопрос о том, что может дать новейшее развитие наших
1 Доклад был прочитан 26 августа 1929 г. на открытии 18-го Скандинавского собрания естествоиспытателей в Копенгагене. — Прим. ред.
1931
36 МАКСВЕЛЛ И СОВРЕМЕННАЯ ТЕОРЕТИЧЕСКАЯ ФИЗИКА *
*Maxwell and Modern Theoretical Physics. Nature, 1931, 128, 691, 692.
Я чувствую себя польщённым тем, что мне предоставлена возможность отдать дань уважения памяти Джемса Клерка Максвелла, создателя электромагнитной теории, которая имеет такое существенно важное значение для работы каждого физика. В связи с этим юбилеем мы слышали выступления главы Тринити-колледжа и Дж. Лармора, которые очень авторитетно и обаятельно говорили об удивительных открытиях Максвелла и о его личности, а также о традиции, сохраняемой здесь, в Кембридже, и связывающей жизнь и труды Максвелла с нашим временем. Хотя в мои ранние учебные годы я имел огромную привилегию пользоваться чарами Кембриджа и вдохновляться влиянием английских физиков, боюсь, что мне не удастся добавить что-нибудь достаточно интересное в этом отношении. Но мне, конечно, доставляет огромное удовольствие приглашение сказать несколько слов о связи между трудами Максвелла и последующим развитием атомной физики.
Я не буду говорить о фундаментальном вкладе Максвелла в развитие статистической механики и кинетической теории газов, о чем уже говорил профессор Планк, особенно в части плодотворного сотрудничества Максвелла с Больцманом. Я намерен только сделать несколько замечаний о применении электромагнитной теории к проблеме строения атома, где теория Максвелла не только была исключительно плодотворна в истолковании явлений, но дала максимум того, что может дать какая бы то ни было теория, а именно способствовала различным предположениям и управляла развитием за пределами её первоначальной применимости.
Я должен, конечно, быть весьма кратким в обсуждении применений идей Максвелла к атомной теории, что само по себе составляет целую главу физики. Я только напомню, с каким успехом идея об атомной природе электричества была включена в теорию Максвелла Лармором и Лоренцем и в особенности как с её помощью были объяснены явления дисперсии, в том числе замечательные особенности эффекта Зеемана. Я хотел бы также упомянуть о существенном вкладе в электронную теорию магнетизма, внесённом профессором Ланжевеном, которого, к сожалению, нет среди нас сегодня. Но больше всего я думаю в этой связи о влиянии идей Максвелла на Дж. Томсона в его основополагающем труде по электронному строению материн — начиная с основной идеи об электромагнитной массе электрона и кончая его знаменитым методом подсчёта электронов в атоме посредством рассеяния рентгеновских лучей, сохранившим свое значение до настоящего времени.
Развитие атомной теории, как известно, скоро вывело нас за пределы прямого и последовательного применения теории Максвелла. Однако я должен подчеркнуть, что именно возможность анализа явлений излучения благодаря электромагнитной теории света привела к признанию существенно новых особенностей в законах природы. Фундаментальное открытие кванта действия Планком заставило радикально пересмотреть все наши представления в естественных науках. И всё же при таком положении теория Максвелла продолжала оставаться ведущей теорией. Так, соотношение между энергией и импульсом излучения, которое следует из электромагнитной теории, нашло применение даже в объяснении комптон-эффекта, для которого идея фотона Эйнштейна оказалась таким подходящим средством учёта заметного отклонения от классических представлений. Теория Максвелла не перестала использоваться в качестве направляющего начала и на позднейшей стадии развития атомной теории. Хотя фундаментальное открытие Резерфордом атомного ядра, приведшее к замечательному завершению наших представлений об атоме, ярче всего обнаружило ограниченность обычной механики и электродинамики, единственным путём развития в этой области осталось сохранение возможно более тесного контакта с классическими идеями Ньютона и Максвелла.