Концепты. Тонкая пленка цивилизации
Шрифт:
(l – длина струны, а = a(t), = (t), = (t)…) – (по работе: К. А. Рыбников. История математики. М., 1974. С. 207).
Более точным математическим анализом может служить понятие «гармонического ряда». Название связано с тем, что струна при делении ее на 2, 3, 4, равные части дает звуки, гармонирующие с основным тоном («Справочник по высшей математике» [Выгодский 1995: 536]).
(Культурологу здесь может быть необходимо, как нам думается, целое математическое п р и м е ч а н и е, для которого просто указываем соответствующую страницу названной книги М. Я. Выгодского (с. 532–533).)
Мы продолжаем историческое изложение К. А. Рыбникова.
В 1807 г. (опубликовано в 1822) Фурье в работах по аналитической теории тепла показал, что [.] все эйлеровские связанные кривые, начерченные свободным движением руки, оказались охваченными аналитическим аппаратом тригонометрических рядов» [Рыбников 1974: 207].
Мы продолжаем изложение К. А. Рыбникова (с. 209, 354). В 1822 г. Фурье опубликовал «аналитическую теорию тепла», оказавшую огромное влияние на развитие математики, в дальнейшем математические методы, ведущие свое начало от Фурье, в соединении с соображениями о законах сохранения энергии (С. Карно, 1824; Р. Майер; Г. Гельмгольц; Дж. Джоуль – 1840–е; Р. Клаузиус, 1850; У. Томсон—Кельвин, 1851) привели к формулировке второго начала термодинамики и установлению понятия энтропии.
Однако сейчас для развития нашей темы нам важны не столько общие принципы вроде начал термодинамики, энтропии и т. п., сколько более конкретные исследовательские понятия, в частности, понятие функции. Это понятие очень популярно у современных исследователей разных областей науки. Математик и культуролог А. Н. П а р ш и н исследовал «числа как функции» [Паршин 2002: 7 и сл. ] (культурологам, в частности, будет интересно «рисунчатое, движением руки, изображение» кривой и знака функции).
Необходимые К. А. Рыбникову для его «Истории математики» (с. 354) ссылки на Л. Больцмана и, самое главное, на развитие понятия функции (с. 200, 206 и сл.) оказываются параллельными (как «изотемы») ссылкам автора данной книги для его истории культуры (например, в работе «Язык и метод. К современной философии языка» [Степанов 1998: 332, 495]; в работе «Функции и глубинное» [Степанов 2002] и др.). По этой причине последнюю изотему мы подчеркнем отдельно – в следующем разделе.
9. Изотема 9Функции и глубинное. Логико—математическое понятие функции & Пропозициональная функция в лингвистике &Бинарная функция в математике и сложное слово в лингвистике
Логико—математическое понятие функции является в настоящее время, несомненно, центральным по положению в нашей системе рассуждения и содержательно важнейшим для нашей цели. Им вводится целый класс математико—лингвистических аналогий, параллелей и исследовательских ситуаций. Ниже нумеруем их – в порядке возникновения в нашем рассуждении – цифрами от 1 и далее; но эта нумерация все же связана до некоторой степени с иерархией понятий в системе.
Теперь рассмотрим более конкретно группу лингвистических явлений, составляющих параллели, аналоги, аналогии (все эти термины для нас равнозначны) к логико—математическим понятиям, покрываемым общим понятием «Функция» или находящимся в какой—либо существенной связи с ним. Для этого «слева» указываем то или иное необходимое частное понятие функции в математическом смысле
Таким образом, нижеследующий текст представляет собой своего рода двуязычный словарь, хотя в типографском отношении входной «левый» термин и «переводной» «правый» могут быть разъединены несколькими строками или даже абзацами.
Лейтмотивом в классе «Функция» является для нас (для лингвиста) идея процесса (вычисления или построения), но, как мы увидим уже в разделе 1, со стороны математики именно ее важность иногда отрицается.
1. Рекурсивные функции и предикаты: процесс и рекурсия. Дж. Литлвуд, рассматривая (резко критически) книгу А. Р. Форсайта «Теория функций комплексного переменного», изданную в 1893 г., но все еще читаемую, цитирует из нее: «Возникновение идеи функциональности вначале было связано с функциями вещественных переменных, и тогда эта идея была равнозначна идее зависимости. Так, если X зависит от значения x и не зависит ни от какой другой изменяющейся величины, то принято X рассматривать как функцию от х; при этом обычно еще
подразумевается, что X выводится из х при помощи ряда операций». Такое изложение, по мнению Литлвуда, навевает «общий кошмар». «В наше время, – продолжает он, – конечно, функция у = у(х) означает, что имеется класс «аргументов» х и что каждому х поставлено в соответствие 1 и только 1 «значение» у. После некоторых тривиальных разъяснений (а может быть, и без них?) мы можем осмелиться сказать, что функция есть просто класс С пар (х, у) (с учетом порядка в скобках), подчиненный (только) тому условию, что х в различных парах должны быть различными (и утверждение «между х и у есть зависимость R» означает просто задание класса, который может быть любым классом упорядоченных пар)» [Литлвуд 1978: 64, 67].
Если термины «изменяющаяся величина», «выводится», «ряд операций» и т. п. вызывают у Дж. Литлвуда «ощущение кошмара», то он упускает и связанную с ними более общую идею «процесса», хотя бы понятия вычислимости. А эта идея и является в настоящее время самой главной.
Изложенное определение в курсах математической логики описывает класс функций, называемых примитивно—рекурсивными функциями: «функция f (t,x), содержащая или не содержащая параметр t, называется примитивно—рекурсивной относительно функций a(t), b(t, x, y), если
(где никакая переменная, встречающаяся в правой части уравнения, не отсутствует в левой части, хотя некоторые переменные и могут отсутствовать в правой части)» [Гудстейн 1961: 73].
Р. Л. Гудстейн обращает внимание на черту аналогии с языком: «Предложение, содержащее свободные переменные, есть арифметический предикат» [Гудстейн 1961: 68].
Для лингвистики прежде всего важны две аналогии, связанные с основными единицами естественного языка: предложением (пропозицией) – пропозициональная функция и словом – слоеная функция.
2. Числовая функция в математике – Пропозициональная в лингвистике (иначе: высказывательная функция). Под последней понимается предложение как форма высказывания, выражающее некоторое суждение; в общей форме, как функция, предложение не завершено: оно содержит в своем составе незаполненные места, могущие быть заполненными словами или словосочетаниями данного языка; последние являются аналогами обозначений аргументов в числовой функции; при подстановке этих словесных переменных в высказывательную функцию она превращается в нормальное высказывание, истинное в том случае, если аргумент соответствует области определения аргументов для данной функции.
Повелитель механического легиона. Том VII
7. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
рейтинг книги
Замуж с осложнениями. Трилогия
Замуж с осложнениями
Фантастика:
фэнтези
юмористическая фантастика
космическая фантастика
рейтинг книги
Я тебя не отпускал
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
рейтинг книги
Кодекс Крови. Книга VI
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
рейтинг книги
Невеста
Любовные романы:
любовно-фантастические романы
эро литература
рейтинг книги
Пипец Котенку! 3
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Возлюби болезнь свою
Научно-образовательная:
психология
рейтинг книги
