Чтение онлайн

на главную - закладки

Жанры

Квантовая хромодинамика: Введение в теорию кварков и глюонов
Шрифт:

p

– m{1-C

F

g

2

B

D

(p

2

)}

(7.5 б)

В действительности нетрудно убедиться, что формула (7.5а) точно учитывает вклад всех диаграмм рис. 4 и при замене (2) на exact представляет собой наиболее общее выражение для пропагатора S. Из выражения (7.56) видно, что расходимости возникают от следующих членов:

1-C

F

g

2

(1-)N

(содержится

в A

D

)

16

2

(7.6)

(на него умножается свободный пропагатор S) и

1+3C

F

g

2

N

(содержится в B

D

)

16

2

(7.7)

(на него умножается масса кварка m). Но оба эти множителя конечны при условии /=0.

Завершим данный параграф замечанием об инфракрасных расходимостях. В этой книге мы рассматриваем главным образом ультрафиолетовые расходимости, появляющиеся в пределе k-> и дающие особенности в виде полюсов гамма-функции (/2). Но процедура размерной регуляризации позволяет также выделять полюсы, отвечающие инфракрасной расходимости и связанные с областью малых значений импульса k->0. Инфракрасные расходимости проявляются в вычислениях как особенности гамма-функции -(/2). Детальное обсуждение этого вопроса можно найти в работе [134].

§ 8. Общие сведения о процедуре перенормировок

Рис. 5. Процесс рассеяния +u->e+d и глюонные поправки к нему.

Рассмотрим следующий процесс. Фотон соударяется с u-кварком протона, а затем u-кварк за счет слабого взаимодействия распадается по схеме u->d+e++ (рис. 5). В низшем порядке по константам связи электромагнитного и слабого взаимодействий и в нулевом порядке по константе сильных взаимодействий g в рассматриваемый процесс дает вклад только диаграмма рис. 5,а. Возможные глюонные поправки описываются диаграммами рис. 5,б-г. Аргументом кваркового пропагатора S(р), фигурирующего в выражении для амплитуды рассеяния, является комбинация p=py+pu (обозначения очевидны); следовательно, выражение для амплитуды рассеяния оказывается расходящимся, и никаких выводов о ее поведении, по крайней мере в рамках теории возмущений, сделать нельзя.

В действительности это не так. При построении теории была допущена некоторая неточность. Рассмотрим для простоты скалярное взаимодействие вида , где поле безмассовое. Лагранжиан, описывающий систему взаимодействующих полей, имеет вид

L=

(i

– m) + 1/2

+ g

.

(8.1)

Как уже говорилось выше, S -матрица определяется выражением

S

=

T exp i

d

4

xL

0

(x)

int

=

 

1+

i

n

d

4

x

1

…d

4

x

n

TL

0

(x)

1

…L

0

(x)

n

,

n!

int

int

 

n=1

(8.2)

где

входящие в лагранжиан L0int(x) поля рассматриваются как свободные и записываются в нормально упорядоченной форме. Член L0int совпадает с трилинейным членом выражения (8.1) после замены ->0, ->0:

L

0

=

g:

0

0

:

0

.

int

(8.3)

Но эта процедура некорректна. Очевидно, что поля, фигурирующие в выражении (8.1) не являются свободными, а их масса m не совпадает с массой, которую имеет поле в отсутствие взаимодействий. Это видно из выражения (7.5) для кваркового пропагатора, в котором масса кварка заменена на комбинацию вида

m{1-

4

g

2

B

D

},

3

а числитель умножен на выражение

1 -

4

g

2

A

D

3

В силу свойства инвариантности теории по отношению к преобразованиям групп внутренней и пространственной симметрии допустимы лишь следующие изменения полей и параметров, фигурирующих в лагранжиане: изменения мультипликативного типа

– >Z

– 1/2

u

, ->Z

– 1/2

u

, g->Z

 

g , m->Z

 

m ,

g

m

(8.4)

и изменения, вызванные добавлением в лагранжиан некоторых дополнительных членов. Можно показать, что в рассматриваемом случае скалярного взаимодействия необходимо еще добавить в лагранжиан член вида 4. Но мы пока этим членом пренебрежем. Таким образом, принимая во внимание только (8.4), из формулы (8.1) получаем выражение для так называемого "перенормированного" лагранжиана

Поделиться:
Популярные книги

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Душелов. Том 4

Faded Emory
4. Внутренние демоны
Фантастика:
юмористическая фантастика
ранобэ
фэнтези
фантастика: прочее
хентай
эпическая фантастика
5.00
рейтинг книги
Душелов. Том 4

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Эволюция мага

Лисина Александра
2. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эволюция мага

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Инквизитор Тьмы 4

Шмаков Алексей Семенович
4. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 4

Кротовский, сколько можно?

Парсиев Дмитрий
5. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, сколько можно?