Чтение онлайн

на главную - закладки

Жанры

Квантовая хромодинамика: Введение в теорию кварков и глюонов
Шрифт:

Z

=

d

.

(12.3)

Функции , и можно вычислить, если использовать уравнение (9.10) и учесть, что величины gu, mu и u не зависят от параметра :

=-Z

– 1

g

d

d

Z

g

,

m,q

=-Z

– 1

m

d

d

Z

m

,

=-Z

d

Z

– 1

d

.

(12.4)

Уравнение (12.1)

в приведенном выше виде неудобно, так как содержит частную производную по параметру /. Но его можно представить в более удобной форме, если использовать соображения размерности. Предположим, что размерность величины R равна ; тогда величина R является безразмерной19), поэтому она может зависеть только от безразмерных отношений размерных параметров. Изменим масштаб импульсов, являющихся аргументами функции Грина, в раз: pi– >pi. В результате получим

19) Размерность полей, входящих в определение функции Грина, легко вычислить, если учесть, что действие =d4xL(x) безразмерно. Отсюда следует, что размерность кварковых полей [q]=[M]3/2, полей духов []=[M], глюонных полей [B]=[M]. Размерность же функции Грина выражается через размерности полей, фигурирующих в её определении. Например, размерность фермионнного пропагатора S=-1 (слагаемые 3/2+3/2 возникают из размерностей полей кварков, а 4 - из элемента объёма четырёхмерного пространства d4x).

R

(p

1

,…,p

N-1

;g,m,a

– 1

;) = F(p

1

/,…,p

N-1

/;g,m/,a

– 1

).

Чтобы отличать масштаб изменения импульсов от калибровочного параметра, последний обозначим через a=– 1. Теперь, заменяя частную производную / на производную -/, получаем уравнение Каллана-Симанзика

{

log

+g

g

+(a

– 1

)

a

– 1

+

 

q

m

q

(

m,q

– 1)

m

q

+

}

x

R

(p

1

,…,p

N-1

;g,m,,)=0.

(12.5)

Чтобы

решить это уравнение, введем эффективные, или "бегущие", параметры, определяемые соотношениями

d

g

d log

=

g

(

g

) ,

d

m

d log

=

m

m,q

 ,

d

a

– 1

d log

=

a

– 1

 ,

(12.6 а)

и удовлетворяющие граничным условиям

g

 

=1

=g ,

m

 

=1

=m ,

a

 

=1

=a .

(12.6 б)

Тогда решение уравнения Каллана—Симанзика можно записать в виде

R

(p

1

,…,p

N-1

;g,m,;)

=

R

(p

1

,…,p

N-1

;

g

,

m

,

a

– 1

;)

x exp

{

log

0

d log '

(

g

('),

m

('),

a

(')

– 1

)

}

.

(12.7)

Из этого выражения видно, что при изменении импульсов в раз функция Грина R не умножается просто на величину как этого следовало ожидать из размерного анализа, а приобретает дополнительный множитель (экспоненту, стоящую в правой части (12.7)). Именно поэтому величину обычно называют аномальной размерностью функции Грина R. С этой точки зрения ренормализационную группу можно интерпретировать как способ обеспечения масштабной инвариантности в квантовой теории калибровочных полей21). Масштабная инвариантность таких теорий нетривиальна ввиду бесконечного характера проводимых перенормировок, в ходе которых вводится внешний по отношению к задаче масштаб масс.

21) Такой подход к вопросу о ренормализационной группе развит в работах [60, 74].

Следует отметить, что выражение (12.7) справедливо всегда безотносительно к теории возмущений; однако на практике для получения реальных результатов необходимо использовать теорию возмущений.

§ 13. Перенормировка составных операторов

Для изучения структуры адронов используют внешние электромагнитные и слабые токи, поэтому необходимо рассмотреть не только функции Грина, но и матричные элементы различных составных операторов. Эти операторы можно разбить на две группы: сохраняющихся или частично сохраняющихся операторов и несохраняющихся операторов.

Поделиться:
Популярные книги

Инвестиго, из медика в маги 2

Рэд Илья
2. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги 2

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

Ох уж этот Мин Джин Хо 1

Кронос Александр
1. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 1

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Кодекс Крови. Книга ХIV

Борзых М.
14. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIV

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Вор (Журналист-2)

Константинов Андрей Дмитриевич
4. Бандитский Петербург
Детективы:
боевики
8.06
рейтинг книги
Вор (Журналист-2)

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Адвокат Империи 2

Карелин Сергей Витальевич
2. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 2

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4