Чтение онлайн

на главную - закладки

Жанры

Квантовая хромодинамика: Введение в теорию кварков и глюонов
Шрифт:

Сохраняющимся является, например, оператор электромагнитного тока Jem=QqVq, где проводится суммирование по всем ароматам кварков, а операторы Vq имеют следующий вид:

V

q

(x)=:

q

(x)

q(x): ;

и во всех порядках теории возмущений удовлетворяют условиям сохранения

 

V

(x)=0 .

q

(13.1

а)

В качестве примера частично сохраняющегося тока можно привести слабый аксиальный ток

A

qq'

(x)=:

q

(x)

5

q'(x): .

Используя уравнения движения (3.6), легко убедиться, что аксиальный ток удовлетворяет соотношениям

A

qq'

(x)=i(m

q

+m

q'

)J

5

qq'

(x) , J

5

qq'

(x)=:

q

(x)

5

q'(x): ,

(13.1 б)

из которых видно, что в пределе больших энергий, когда можно пренебречь массами кварков, он является сохраняющимся.

Вообще говоря, матричные элементы любого составного оператора представляют собой расходящиеся величины. Но если учесть контрчлены, входящие в лагранжиан КХД, то матричные элементы сохраняющихся и частично сохраняющихся токов оказываются конечными 21a). Физически это очевидно, формальное же доказательство этого утверждения будет приведено ниже.

21a) Отметим, что мы работаем в низшем порядке теории возмущений по слабому и электромагнитному взаимодействиям. В противном случае возникает необходимость включения в формулы слабых и электромагнитных перенормировочных множителей ZF, ZemF и т.д.

Несохраняющиеся операторы, как правило, требуют проведения перенормировки. Чтобы убедиться в этом, рассмотрим в качестве простого примера оператор i:qi(x)qi(x)M(x). Как уже обсуждалось в § 8 и 9, можно работать либо с неперенормированной величиной ququ и проводить вычисления, учитывая контрчлены, либо использовать перенормированную величину Z– 1Fququ , проводя подстановки g->gu=Zgg для константы связи и m->mu=Zmm для массы и пренебрегая контрчленами. Тем не менее, вообще говоря, этого оказывается недостаточно, чтобы величина M была конечной. Для того чтобы получить конечные выражения для матричных элементов оператора M, необходимо умножить его на дополнительный множитель ZM, называемый перенормировочным множителем оператора:

M

R

(x)=Z

M

M(x) .

(13.2)

Чтобы

доказать это утверждение, используем формулы § 3. При этом поля, отмеченные верхним или нижним индексом 0, являются свободными, например q0q0u или B0B0u. В терминах свободных полей оператор MR записывается в виде

M

R

(x)=Z

M

T:

q

0

(x)q

0

(x):

exp i

d

4

zL

0

int

(z) .

В низшем порядке теории возмущений по константе связи g это выражение принимает вид

M

R

(x)

=

Z

 

M

Z

– 1

F

:

q

0

(x)q

0

(x):

=

g

2

2!

Z

M

d

4

z

1

d

4

z

2

T

:

q

0

(x)q

0

(x):

:

q

0

(z

1

)t

a

q

0

(z

1

):

x

q

0

(z

2

)t

b

q

0

(z

2

):

B

0a

(z

1

)

B

0b

(z

2

) .

(13.3)

Поскольку перенормировочный множитель оператора имеет вид ZM=1+O(g2), множителем ZM во втором слагаемом правой части (13.3) можно пренебречь. Рассмотрим далее расходящиеся матричные элементы, а именно матричные элементы MR по кварковым состояниям с равным импульсом p; нетрудно видеть, что характер расходимости в рассматриваемом примере одинаков как для диагональных, так и для недиагональных матричных элементов. Обозначим диагональные матричные элементы операторов M и MR соответственно через Mp и MRp. Тогда в калибровке Ферми-Фейнмана после простых вычислений из выражения (13.3) для этих матричных элементов получим

Поделиться:
Популярные книги

Инвестиго, из медика в маги 2

Рэд Илья
2. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги 2

Конструктор

Семин Никита
1. Переломный век
Фантастика:
попаданцы
альтернативная история
4.50
рейтинг книги
Конструктор

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4

Ох уж этот Мин Джин Хо 1

Кронос Александр
1. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 1

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Кодекс Крови. Книга ХIV

Борзых М.
14. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIV

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Вор (Журналист-2)

Константинов Андрей Дмитриевич
4. Бандитский Петербург
Детективы:
боевики
8.06
рейтинг книги
Вор (Журналист-2)

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Адвокат Империи 2

Карелин Сергей Витальевич
2. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 2

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4