Чтение онлайн

на главную - закладки

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

N

=

t

b

– t

a

,

=

t

i+1

– t

i

,

t

0

=

t

a

, t

N

=t

b

,

x

0

=

x

a

, x

N

=x

b

.

(2.19)

В

результате получим выражение

K(b,a)~

[x(t)]dx

1

dx

2

…dx

N-1

.

(2.20)

Интегрирование не производится по x0 и xN, так как эти переменные совпадают с фиксированными концами траекторий xa и xb. Это выражение формально соответствует соотношению (2.17). Уменьшая , мы можем получить более полное представление множества всех возможных траекторий, соединяющих точки a и b. Однако точно так же, как и в случае интеграла Римана, невозможно достичь предела этого процесса, так как такой предел не существует. Мы снова должны ввести некоторый нормирующий множитель, который, как и следует ожидать, будет зависеть от .

К сожалению, определение такого нормирующего множителя оказывается весьма трудной задачей, и неизвестно, как это делать в общем случае. Однако нам это удаётся сделать для всех задач, которые до сих пор имели практическое значение. Возьмём, например, случай, когда лагранжиан задаётся выражением (2.2). Нормирующий множитель в этом случае равен A– N, где

A=

2ih

m

1/2

.

(2.21)

Как получен этот результат, мы увидим далее (см. § 1 гл. 4). С учётом множителя A переход к пределу имеет смысл, и мы можем написать

K(b,a)=

 

lim

– >0

1

A

e

(i/h)S[b,a]

dx1

A

dx2

A

dxN-1

A

(2.22)

где

S[b,a]=

tb

ta

L(x,x,t)dt

(2.23)

представляет собой однократный интеграл вдоль траектории, проходящей, как это показано на фиг. 2.3, через все соединённые прямолинейными отрезками точки xi.

Фиг. 2.3. Сумма по всем траекториям.

Она определяется как предел, в котором траектория первоначально задаётся лишь координатами x для большого числа фиксированных моментов времени, разделённых очень малыми интервалами длины . Тогда сумма по траекториям равна интегралу по всем этим выбранным координатам. Наконец для определения меры берётся предел при ->0.

Возможно и более изящное определение траектории. Для соединения точек xi и xi+1 вместо отрезков прямых линий мы могли бы использовать отрезки классической траектории. Тогда можно было бы сказать, что S — это наименьшее значение интеграла, взятого от лагранжиана по всем траекториям, которые проходят через выбранные точки (xi,ti). При таком определении нет необходимости прибегать к каким-то не имеющим

физического смысла переходам по отрезкам прямых.

Интеграл по траекториям. Имеется много способов выбрать некоторое подмножество из всех траекторий, проходящих через точки a и b. Применявшийся нами способ, возможно, не является наилучшим с точки зрения математики. Предположим, например, что лагранжиан зависит от ускорения в точках x. В нашем способе построения траектории скорость имеет разрывы во всех точках (xi,ti), и, следовательно, ускорение в этих точках бесконечно велико. Это могло бы привести к затруднениям, но в тех немногих примерах, с которыми мы уже имели дело, вполне законной была замена

x=

1

^2

(x

i+1

– 2x

i

+x

i-1

)

(2.24)

Могут быть случаи, когда такая замена непригодна или неточна и использовать наше определение суммы по траекториям становится весьма затруднительно. Такая ситуация возникает уже при обычном интегрировании, если некорректно определение интеграла по Риману, задаваемое равенством (2.18), и приходится обращаться к другим определениям, например к интегралу Лебега.

Необходимость уточнить способ интегрирования вовсе не дискредитирует саму идею. Просто речь идёт о том, что возможные неудобства, связанные с нашим определением суммы по траекториям [см. выражение (2.22)], в конечном счёте могут потребовать формулировки новых определений. Тем не менее сама идея суммирования по всем траекториям, подобно идее обычного интеграла, не зависит от специфики определения и сохраняет смысл, несмотря на недостатки некоторых частных построений. Поэтому, пользуясь менее связывающими обозначениями, мы будем записывать сумму по траекториям как

K(b,a)=

b

a

e

(i/h)S[b,a]

Dx(t)

(2.25)

и называть её интегралом по траекториям. Это обстоятельство отметим введением знака D вместо оператора дифференциала d. Лишь изредка мы будем возвращаться к выражению типа (2.22).

Задача 2.6. Класс функционалов, на котором можно определить интегралы по траекториям, оказывается неожиданно широким. До сих пор мы рассматривали лишь функционалы типа (2.15). Теперь перейдём к рассмотрению совсем иного типа функционалов, возникающих в одномерной релятивистской задаче. Предположим, что движущаяся по прямой частица может перемещаться только вперёд и назад со скоростью света. Для удобства выберем такие масштабы измерений, чтобы скорость света, масса частицы и постоянная Планка равнялись единице. Тогда в плоскости (x,t) все траектории движения такого осциллятора имеют наклон ±/4, как показано на фиг. 2.4. Амплитуду, соответствующую одной из таких траекторий, можно определить следующим образом: разделим время на малые интервалы длиной и предположим, что изменение направления движения может происходить только на границе этих интервалов, т.е. в моменты времени t=ta+n, где n — целое число. В такой релятивистской задаче амплитуда перехода вдоль рассматриваемой траектории отличается от амплитуды (2.15); правильным в данном случае будет выражение

=(i)

R

,

(2.26)

где R — число точек поворота на траектории.

Фиг. 2.4. Траектория релятивистской частицы, движущейся в двух измерениях.

Это зигзагообразная линия с прямолинейными отрезками. Наклон прямых постоянен по величине и различается только знаком в обеих частях зигзага. Амплитуда вероятности для некоторой частной траектории, так же как и ядро, описывающее переход из точки a в точку b, зависит от числа поворотов R на траектории; это следует из выражений (2.26) и (2.27).

Поделиться:
Популярные книги

Господин следователь 6

Шалашов Евгений Васильевич
6. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь 6

Пепел и кровь

Шебалин Дмитрий Васильевич
4. Чужие интересы
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Пепел и кровь

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Ликвидатор на службе Империи. Том 2

Бор Жорж
2. Ликвидатор на службе Империи
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ликвидатор на службе Империи. Том 2

Имя нам Легион. Том 15

Дорничев Дмитрий
15. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 15

Последний Герой. Том 3

Дамиров Рафаэль
3. Последний герой
Фантастика:
попаданцы
альтернативная история
фантастика: прочее
5.00
рейтинг книги
Последний Герой. Том 3

Седьмой Рубеж V

Бор Жорж
5. 5000 лет темноты
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Седьмой Рубеж V

Неучтенный элемент. Том 2

NikL
2. Антимаг. Вне системы
Фантастика:
городское фэнтези
фэнтези
5.00
рейтинг книги
Неучтенный элемент. Том 2

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Законы Рода. Том 14

Андрей Мельник
14. Граф Берестьев
Фантастика:
аниме
фэнтези
эпическая фантастика
5.00
рейтинг книги
Законы Рода. Том 14

Наследник павшего дома. Том VI

Вайс Александр
6. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том VI

Воронцов. Перезагрузка

Тарасов Ник
1. Воронцов. Перезагрузка
Фантастика:
попаданцы
альтернативная история
фантастика: прочее
5.00
рейтинг книги
Воронцов. Перезагрузка

Восход. Солнцев. Книга V

Скабер Артемий
5. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга V