Чтение онлайн

на главную - закладки

Жанры

Математические модели в естественнонаучном образовании
Шрифт:

Определение. Собственные значения матрицы

, которые являются наибольшими по абсолютной величине, называются доминирующими собственными значениями матрицы
. Соответствующий им собственный вектор называется доминирующим собственным вектором.

Обратите внимание, на множественное число доминирующих собственных значений в определении, потому что несколько собственных значений могут иметь одинаковое абсолютное значение. Если существует собственное значение, абсолютное значение которого строго больше всех остальных (например,

 для всех
),
говорим, что он строго доминирует.

Перенумеровав собственные значения таким образом, чтобы

 было доминирующим, получим выражение
.

Предполагая, что

 является строго доминирующим, получим
 для всех
. Так как увеличение
 уменьшает все слагаемые, за исключением первого, отбрасывание стремящихся к нулю слагаемых показывает, что поведение вектора
 аппроксимируется
.

Таким образом, в целом модель отображает примерно экспоненциальный рост или спад, в зависимости от доминирующего значения

. Например, модель, изображенная рисунке 2.2. должна иметь доминирующее собственное значение больше, чем 1, так как график показывает экспоненциальный рост.

Доминирующее собственное значение описывает основной компонент поведения модели. Для линейной модели популяции доминирующее собственное значение часто называют внутренним темпом роста популяции, и это единственное наиболее важное число, описывающее, как популяция меняется с течением времени. Это яркий пример сводной статистики, потому что извлекается наиболее важная характеристика из всех элементов матрицы перехода.

Однако выведенное уравнение может рассказать больше. Разделив каждую его часть на

, получим
. При
, имеем
.

Другими словами, если пытаться нейтрализовать рост, который модель предсказывает для

, вектор значений просто устремится к кратному доминирующему собственному вектору. Поэтому для большого
 компоненты вектора
 должны быть примерно в тех же пропорциях друг к другу, что и компоненты вектора
. Это можно было наблюдать на рисунке 2.2 после того, как прошли первые несколько временных шагов.

Поэтому для популяционной модели доминирующий собственный вектор часто называют стабильным возрастным распределением или стабильным распределением стадий, потому что он дает пропорции популяции, которые должны появляться в каждом возрастном или сценическом классе, как только обнаруживаем тенденцию роста.

До этого момента избегали комментировать значения коэффициентов

 в выводимых уравнениях. Напомним, что они были найдены как вектор
 решения уравнения
, где
 –
матрица с собственными векторами в качестве столбцов. Это означает, что если изменить
, то изменятся и значения
. Только через
 исходный вектор
 раскладывается в формулах на линейную комбинацию из собственных векторов.

Несмотря на то, что ранее это не указывалось, обсуждение темпов роста и стабильного распределения фактически требовало предположения о том, что

. Если углубиться в этот вопрос, то придем к довольно существенному выводу: основные черты качественного поведения моделей – синтетического роста и стабильного распределения – являются независимыми от их собственного вектора. Только доминирующий собственный вектор и собственное значение говорят о наиболее важных особенностях модели. Этот результат иногда называют сильной эргодической теоремой для линейных моделей или, в контексте популяционных моделей, фундаментальной теоремой демографии.

Хотя определенные варианты значений

 могут привести к
, это происходит очень редко; для большинства вариантов
 ожидается
. Более того, во многих случаях можно доказать, что
 для всех статистически значимых вариантов значений
.

Пример. Рассмотрим модель Ашера для популяции с двумя классами стадий, заданными матрицей перехода

.

Поскольку есть только два класса, можно сделать некоторые предположения относительно того, как должна измениться популяция. Обратите внимание, что каждая взрослая особь производит двух потомков, но только половина из них доживает до зрелого возраста. Если бы нижний правый элемент не был бы равен

, можно было бы ожидать стабильного размера популяции, но небольшая часть взрослых особей, выживает после каждой итерации и, следовательно, размножаются снова, это должно привести к росту популяции. Поскольку доля взрослых особей, выживающих в течение дополнительного временного этапа, невелика, популяция, вероятно, будет расти медленно.

Воспользуемся компьютером для вычисления собственных векторов и собственных значений.

P=[0, 2; .5, .1]

[V,D]=eig(P)

Получим

 ,
.

Это означает, что если задать первоначальную популяцию, которая здесь не была приведена, как

 , для некоторых чисел
 и
 все будущие популяции будут предопределены следующим образом:
.

Первое слагаемое срок здесь приведет к медленному росту, в то время как второе слагаемое уменьшается в размерах. Обратите внимание, что знак собственного значения во втором члене заставит числа в этом члене колебаться между отрицательными и положительными значениями постепенно приближаясь к нулю. Это означает, что если выберем любую начальную популяцию, рассчитаем будущие популяции и построим их график, то должны ожидать медленной экспоненциальной тенденции роста с наложенным на нее затухающим колебанием. Можно это увидеть на примере двух вариантов начальных векторов популяции на рисунке 2.3.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Неправильный боец РККА Забабашкин 3

Арх Максим
3. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный боец РККА Забабашкин 3

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Убивать чтобы жить 9

Бор Жорж
9. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 9

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Запечатанный во тьме. Том 1. Тысячи лет кача

NikL
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
5.00
рейтинг книги
Запечатанный во тьме. Том 1. Тысячи лет кача

Я снова граф. Книга XI

Дрейк Сириус
11. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я снова граф. Книга XI

Студиозус

Шмаков Алексей Семенович
3. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Невеста напрокат

Завгородняя Анна Александровна
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Невеста напрокат