Чтение онлайн

на главную - закладки

Жанры

Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров

РАЛЬФ ВИНС РАЛЬФ

Шрифт:

4. Сложите результаты, полученные в шаге 3, за все периоды. Это и есть числитель.

5. Теперь найдите знаменатель. Для этого возьмите результаты шага 2 для каждого периода, как для разностей X, так и для разностей Y, и возве­дите их в квадрат (теперь они будут положительными значениями).

6. Сложите возведенные в квадрат разности Х за все периоды. Проделайте ту же операцию с возведенными в квадрат разностями Y.

7. Извлеките квадратный корень из суммы возведенных в квадрат разно­стей X, которые найдены в шаге 6. Теперь проделайте то же с Y, взяв квадратный корень суммы возведенных в квадрат разностей Y.

8. Умножьте два результата, которые вы нашли в шаге 7, то есть умножьте квад­ратный корень суммы возведенных в квадрат разностей Х на квадратный корень суммы возведенных в квадрат разностей Y. Это и есть знаменатель.

9. Разделите числитель, который вы нашли в шаге 4, на знаменатель, кото­рый вы нашли в шаге 8. Это и будет коэффициент линейной корреляции г.

Значение г всегда будет между +1,00 и -1,00. Значение 0 указывает, что корре­ляции нет.

Теперь посмотрите на рисунок 1-4. Он представляет следующую последова­тельность из 21 сделки:

Чтобы

понять, есть ли какая-либо зависимость между предыдущей и текущей сделкой, мы можем использовать коэффициент линейной корреляции. Для зна­чений Х в формуле для г возьмем P&L по каждой сделке. Для значений Y в фор­муле для г возьмем ту же самую последовательность P&L, только смещенную на одну сделку. Другими словами, значение Y — это предыдущее значение X. (См. рисунок 1-5.).

Рисунок 1-4 Отдельные результаты 21 сделки

Рисунок 1-5 Отдельные результаты 21 сделки, сдвинутые на 1 сделку

Средние значения различаются, потому что вы усредняете только те Х и Y, кото­рые частично перекрывают друг друга, поэтому последнее значение Y (3) не вносит вклад в среднее Y, а первое значение Х (1) не вносит вклад в среднее X. Числитель является суммой всех значений из столбца Е (0,8). Чтобы найти знаменатель, мы извлечем квадратный корень из итогового значения столбца F, то есть 8,555699, затем извлечем квадратный корень из итогового значения столб­ца G, то есть 8,258329, и перемножим их, что даст в результате 70,65578. Теперь разделим числитель 0,8 на знаменатель 70,65578 и получим 0,011322. Это наш ко­эффициент линейной корреляции г. В данном случае коэффициент линейной корреляции 0,011322 едва ли о чем-то говорит, но для многих торговых систем он может достигать больших значений. Высокая положительная корреляция (по крайней мере, 0,25) говорит о том, что большие выигрыши редко сменяются большими проигрышами, и наоборот. Отрицательные значения коэффициента корреляции (между -0,25 и -0,30) подразумевают, что после больших проигрышей следуют большие выигрыши, и наоборот. Для заданного количества сделок с по­мощью метода, известного как «Трансформация Z Фишера», коэффициент корре­ляции можно преобразовать в доверительный уровень. Эта тема рассматривается в приложении С. Отрицательную корреляцию так же, как и положительную, можно использовать в своих интересах. Например, если обнаружена отрицатель­ная корреляция и система показала большой проигрыш, то в следующей сделке можно ожидать большой выигрыш и таким образом открыть больше контрактов, чем обычно. Если и эта сделка принесет убыток, то он не должен быть очень боль­шим (из-за отрицательной корреляции).

Наконец, при определении зависимости вы должны провести тесты по разным сегментам данных. Для этого разбейте ваши данные на две или более частей. Если вы увидите зависимость в первой части, тогда посмотрите, существует ли эта зави­симость во второй части, и так далее. Это поможет исключить случаи, где появляет­ся кажущаяся зависимость, но фактически ее нет. Использование этих двух инструментов (серийный тест и коэффициент ли­нейной корреляции) поможет ответить на многие вопросы, однако только в том случае, если у вас есть достаточно высокая доверительная граница и/или доста­точно высокий коэффициент корреляции. Большую часть времени эти инстру­менты вряд ли будут вам полезны, так как слишком часто во фьючерсных торговых системах зависимость отсутствует. Если вы получите данные, указывающие на зависимость, то следует обязательно воспользоваться этим обстоятельством в торговле, вернуться и включить новое правило в торговую логику, чтобы ис­пользовать зависимость. Другими словами, вы должны вернуться и изменить ло­гику торговой системы, чтобы она учитывала эту зависимость (минуя определен­ные сделки или разбивая систему на две различные системы, например, одна для сделок после выигрышей и одна для сделок после проигрышей). Таким образом, можно утверждать, что, если в сделках появляется зависимость, вы не максими­зировали систему. Зависимость, если она найдена, надо использовать (для этого измените правила системы), пока она не исчезнет. Первой ступенью в управле­нии деньгами является использование и, следовательно, удаление любой зависимос­ти в сделках. Чтобы узнать о зависимости больше, прочитайте приложение С: «Подробнее о зависимости: разворотные точки и тест длины фазы». Мы рассмотрели зависимость в отношении торговых прибылей и убытков. Можно также поискать зависимость между индикатором и последующей сделкой или между любыми двумя переменными. Чтобы узнать больше об этих концепци­ях, посмотрите приложение В, а именно: раздел «Биномиальное распределение», посвященный статистической оценке торговой системы.

Обычные ошибки в отношении зависимости

Будучи трейдерами, мы должны исходить из того, что в большинстве рыночных систем зависимости не существует. То есть, при торговле в данной рыночной си­стеме, мы находимся в среде, где результат следующей сделки не предсказуем на основе результата (результатов) предыдущих сделок. Это не значит, что в рыноч­ных системах никогда не бывает зависимости между сделками. Речь идет о том, что нам следует действовать так, как будто зависимости не существует, пока не будет убедительных доказательств обратного. Это произойдет в случае, если счет Z и коэффициент линейной

корреляции указывают на зависимость на рынке даже с оптимизированными параметрами системы. Если мы посчитаем, что за­висимость есть, когда нет убедительных доказательств, то обманем сами себя и не получим хороших торговых результатов. Даже если система показала зави­симость при доверительной границе 95% для всех значений параметра, это не достаточно высокая доверительная граница, чтобы с уверенностью говорить, что на определенном рынке или в определенной системе зависимость между сделка­ми существует.

Первая ошибка заключается в том, что мы можем отвергнуть гипотезу, кото­рую следует принять. Если, однако, мы принимаем гипотезу, когда ее следует от­вергнуть, то совершаем другую ошибку. Не зная заранее, верна или нет гипотеза, мы должны решить, какую цену мы готовы заплатить за первую ошибку, а какую за вторую. Иногда одна ошибка серьезнее, чем другая, и в таких случаях мы долж­ны решить, принимать или отвергать неподтвержденную гипотезу, выбирая меньшее из двух зол.

Допустим, вы хотите использовать определенную торговую систему, но не уве­рены, будет ли она работать при торговле в режиме реального времени. Здесь ги­потеза состоит в том, что торговая система будет хорошо работать в режиме ре­ального времени. Вы решаете принять гипотезу и торговать с помощью этой сис­темы. Если гипотеза не подтвердится, то вы совершите вторую ошибку и заплатите за нее проигрышами. С другой стороны, если вы решите не торговать по системе, которая на самом деле окажется прибыльной, то совершите первую из рассмотренных нами ошибок. В этом случае цена, которую вы заплатите, — это упущенные прибыли. Что лучше? Ясно, что упущенная прибыль. Хотя из этого примера можно сделать вывод, что если вы собираетесь торговать по системе в ре­жиме реального времени, то ей, конечно, надо быть прибыльной на прошлых данных, но есть и другой мотив для использования этого примера. Если мы допу­стим, что зависимость есть, когда фактически ее нет, то совершим вторую ошибку. Цена, которую мы заплатим, — реальный убыток. Однако если мы допустим, что зависимости нет, а она на самом деле есть, то совершим первую ошибку и упустим прибыль. Согласитесь, что лучше упустить прибыль, чем понести реальные убыт­ки. Поэтому, пока не будет убедительного доказательства зависимости, вам лучше исходить из того, что прибыли и убытки в торговле (неважно, по механической системе или нет) не зависят от предыдущих результатов. Здесь, как может пока­заться, существует некий парадокс. Во-первых, если существует зависимость в сделках, то система подоптимальна. Однако о зависимости никогда нельзя го­ворить с полной уверенностью. Если мы будем действовать, как будто зависи­мость есть (когда фактически ее нет), мы совершим более дорогостоящую ошиб­ку, чем если бы действовали, как будто зависимости нет (когда фактически она есть). Допустим, что в системе с историей из 60 сделок на основе серийного теста обнаружена зависимость с доверительным уровнем 95%. Мы хотим, чтобы наша система была оптимальной, поэтому соответствующим образом изменяем ее пра­вила, чтобы использовать замеченную зависимость. Предположим, после этого у нас остается 40 сделок, и зависимости больше нет, в результате, мы приходим к выводу, что правила системы оптимальны. Теперь при 40 сделках мы получаем бо­лее высокое оптимальное f, чем при 60 (более подробно об оптимальном f — далее в этой главе). Если вы будете торговать по этой системе с новыми правилами, ис­пользующими зависимость, применяя более высокое сопутствующее оптималь­ное f, а зависимости на самом деле нет, то результат будет ближе к 60 сделкам, чем к 40 сделкам, в которых были показаны лучшие результаты. Таким образом, f, которое вы выбрали, будет сдвинуто вправо, что выразится в потерях, которые вы понесете из-за того, что предположили зависимость. Если зависимость присут­ствует, тогда вы будете ближе к пику кривой f, допускающей, что зависимость су­ществует. Если бы вы решили, что зависимости нет, когда фактически она есть, то вы были бы слева от пика кривой f, и ваша система была бы подоптимальной (но вы потеряете меньше, чем если бы были справа от пика).

Короче говоря, ищите зависимость. Если она обнаружится с достаточно высо­кой вероятностью, тогда измените правила системы, чтобы использовать эту за­висимость. В противном случае, при отсутствии убедительного статистического доказательства зависимости, считайте, что ее не существует (и вы понесете мень­шие потери, если фактически зависимость все же существует).

Математическое ожидание

Таким же образом, вам лучше не торговать, пока не будет убедительных доказа­тельств того, что рыночная система, по которой вы собираетесь торговать, при­быльна, то есть пока вы не будете уверены, что рыночная система имеет положи­тельное математическое ожидание. Математическое ожидание является суммой, которую вы можете заработать или проиграть, в среднем, по каждой ставке. На языке азартных игроков это иногда называется «преимуществом игрока» (если оно положительно для игрока) или «преимуществом казино» (если оно отрицательно для игрока):

где Р = вероятность выигрыша или проигрыша;

А = выигранная или проигранная сумма;

N = количество возможных результатов.

Математическое ожидание — это сумма произведений каждого возможного выиг­рыша или проигрыша и вероятности такого выигрыша или проигрыша.

Давайте рассмотрим математическое ожидание игры, где у вас есть 50% шан­сов выиграть 2 доллара и 50% шансов проиграть 1 доллар:

Математическое ожидание = (0,5 * 2) + (0,5 * (-1)) =1+(-0.5) =0,5

В таком случае ваше математическое ожидание — выигрыш 50 центов, в среднем, забросок.

Рассмотрим ставку на один номер в рулетке. В этом случае ваше математичес­кое ожидание составит:

МО =((1/38)* 35)+((37/38) *(-1)) = (0,02631578947 * 35) + (0,9736842105 * (-1)) = (0,9210526315) + (-0,9736842105) = -0,05263157903

Если вы поставите 1 доллар на номер в рулетке (американский двойной ноль), то можете ожидать проигрыш, в среднем, 5,26 центов на один круг. Если вы поставите 5 долларов, то можете ожидать проигрыш, в среднем, 26,3

Поделиться:
Популярные книги

Перекресток

Сфинкс
Проект «Поттер-Фанфикшн»
Фантастика:
фэнтези
5.00
рейтинг книги
Перекресток

Ваше Сиятельство 8

Моури Эрли
8. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 8

Эволюционер из трущоб. Том 7

Панарин Антон
7. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 7

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2

Плеяда

Суконкин Алексей
Проза:
военная проза
русская классическая проза
5.00
рейтинг книги
Плеяда

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Младший сын князя. Том 4

Ткачев Андрей Юрьевич
4. Аналитик
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Младший сын князя. Том 4

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Прорвемся, опера!

Киров Никита
1. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера!